MANNIN

REPORT NO. FAA-MS-77-2 GENERAL AVIATION AMONICS STATISTICS: 1974

AA. 77.11

ANNUAL REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22181

Prepared by U.S. Department of Transportation Transportation Systems Center Kendall Square Cambridge MA 02142

Prepared for

REPARTMENT OF TRANSPORTA FEDERAL Office of Management Systems oton

Technical Report Documentation Page

Report No.	2. Government Accession N	o	pient's Catalog No.	
FAA-MS-77-2		5. Repo	rt Date	
Title and Subtitle		Aug	ust 1977	
GENERAL AVIATION STATISTICS: 1974	AVIONICS		orming Organization Cod	
011110100		8. Perf	orming Organization Rep	ort No.
Author(s)		DOT	-TSC-FAA-77	-11
Judith C. Schwen	k(Editor)		rk Unit No. (TRAIS)	
Performing Organization Name an	d Address	FA7	43/R7145	
U.S. Department	of Transportation	11. Co	intract or Grant No.	
Transportation S	ystems control			
Kendall Square Cambridge MA 02	142		pe of Report and Period	Covered
		Anr	ual Report	
2. Sponsoring Agency Name and Ad			CY 1974	
1 AVT 9 T 7 () ()		14 6	ionsoring Agency Code	
office of Manage	ment systems	14. Sp	AllaAlling Claural - 255	
Washington DC 20	590			
5. Supplementary Notes				
6. Abstract The primary	objectives of this st neral aviation (GA) ai	rcraft fleet, wh	ich would relat	te air- in the
for viewing the ge borne avionics equ National Airspace of aircraft common aircraft. To provide the designed and trans tions in the airsp groups consist of different airspace different classes equipment which g required equipmen Once the fra 1974 Aircraft Sta groups, and its c bility groups wer	objectives of this st neral aviation (GA) ai ipment to the capabili System, and (2) within to the GA fleet in te framework, capability lated into aircraft cap bace system. Two types avionics equipment med e segments, in different of airports; non-hier ive an aircraft addition t according to FAA reg mework was developed, tistical Master File, haracteristics were st e analyzed to discover stistics. This report particular	ty for an aircra this framework, erms of description pability to perf s of groups evolve eting FAA requires archical groups of onal capability, ulations. the GA fleet, as was distributed udied. In addit	ft to perform to portray th ve information dics equipment orm certain fu yed: hierarchi ements for flyi for landing a consist of avid but which are represented by among the capa ion, individua reraft with ho	in the e types on the were nc- cal ing in t onics not y the bility 1 capa- mo-
for viewing the ge borne avionics equ National Airspace of aircraft common aircraft. To provide the designed and trans tions in the airsp groups consist of different airspace different classes equipment which g required equipmen Once the fra 1974 Aircraft Sta groups, and its c bility groups wer	neral aviation (GA) di ipment to the capabili System, and (2) within to the GA fleet in te framework, capability lated into aircraft ca oace system. Two types avionics equipment med segments, in differer of airports; non-hier ive an aircraft addition t according to FAA reg mework was developed, tistical Master File, haracteristics were st e analyzed to discover	ty for an aircra this framework, erms of description pability to perf s of groups evolve eting FAA required archical groups do onal capability, ulations. the GA fleet, as was distributed cudied. In addit subgroups of ai presents the meth cher results.	ft to perform to portray th ve information dics equipment orm certain fu yed: hierarchi ements for flyi for landing a consist of avic but which are represented b among the capa ion, individua rcraft with ho bodologies used	in the e types on the were nc- cal ing in t onics not y the bility 1 capa- mo-
for viewing the ge borne avionics equ National Airspace of aircraft common aircraft. To provide the designed and trans tions in the airsp groups consist of different airspace different classes equipment which g required equipmen Once the fra 1974 Aircraft Sta groups, and its c bility groups wer geneous character the analyses, sta	neral aviation (GA) di ipment to the capabili System, and (2) within to the GA fleet in te framework, capability lated into aircraft ca oace system. Two types avionics equipment med segments, in differer of airports; non-hier ive an aircraft addition t according to FAA reg mework was developed, tistical Master File, haracteristics were st e analyzed to discover	ty for an aircra this framework, erms of descripting pability to perf s of groups evolve eting FAA required it conditions and archical groups evolve onal capability, ulations. the GA fleet, as was distributed udied. In addit subgroups of ai presents the meth ther results.	ft to perform to portray th ve information dics equipment orm certain fu yed: hierarchi ements for flyi for landing a consist of avid but which are represented b among the capa ion, individua rcraft with ho modologies used	in the e types on the were nc- cal ing in t onics not y the bility l capa- mo- in
for viewing the ge borne avionics equ National Airspace of aircraft common aircraft. To provide the designed and trans tions in the airsp groups consist of different airspace different classes equipment which g required equipmen Once the fra 1974 Aircraft Sta groups, and its c bility groups wer	neral aviation (GA) di ipment to the capabili System, and (2) within to the GA fleet in te framework, capability lated into aircraft ca oace system. Two types avionics equipment med segments, in differer of airports; non-hier ive an aircraft addition t according to FAA reg mework was developed, tistical Master File, haracteristics were st e analyzed to discover istics. This report p atistical tables and ot	ty for an aircra this framework, erms of description pability to perf s of groups evolve eting FAA required archical groups evolve onal capability, ulations. the GA fleet, as was distributed udied. In addit subgroups of ai presents the meth ther results.	ft to perform to portray th ve information dics equipment orm certain fu yed: hierarchi ements for flyi for landing a consist of avic but which are represented b among the capa ion, individua rcraft with ho bodologies used	in the e types on the were nc- cal ing in it onics not y the bility 1 capa- mo- in
for viewing the ge borne avionics equ National Airspace of aircraft common aircraft. To provide the designed and trans tions in the airsp groups consist of different airspace different classes equipment which g required equipmen Once the fra 1974 Aircraft Sta groups, and its c bility groups wer geneous character the analyses, sta	neral aviation (GA) di ipment to the capabili System, and (2) within to the GA fleet in te a framework, capability lated into aircraft ca bace system. Two types avionics equipment mee segments, in differer of airports; non-hier- ive an aircraft addition t according to FAA reg mework was developed, tistical Master File, haracteristics were st istics. This report p tistical tables and ot ral Aviation	ty for an aircra this framework, erms of description pability to perform the of groups evolved to only the transformer onal capability, ulations. the GA fleet, as was distributed to distributed to distributed to be the method the results. 18. Distribution Statement DOCUMENT IS THROUGH THI INFORMATION VIRGINIA 221	ft to perform to portray th ve information dics equipment orm certain fu yed: hierarchi ements for flyi for landing a consist of avio but which are represented b among the capa ion, individua rcraft with ho bodologies used	in the e types on the were nc- cal ing in it onics not y the bility 1 capa- mo- in
for viewing the ge borne avionics equ National Airspace of aircraft common aircraft. To provide the designed and trans tions in the airsp groups consist of different airspace different classes equipment which g required equipmen Once the fra 1974 Aircraft Sta groups, and its c bility groups wer geneous character the analyses, sta	neral aviation (GA) di ipment to the capabili System, and (2) within to the GA fleet in te framework, capability lated into aircraft ca oace system. Two types avionics equipment med segments, in differer of airports; non-hiera ive an aircraft addition t according to FAA reg mework was developed, tistical Master File, haracteristics were st e analyzed to discover istics. This report p atistical tables and ot	ty for an aircra this framework, erms of description pability to perform the of groups evolved to only the transformer onal capability, ulations. the GA fleet, as was distributed to distributed to distributed to be the method the results. 18. Distribution Statement DOCUMENT IS THROUGH THI INFORMATION VIRGINIA 221	ft to perform to portray th ve information dics equipment orm certain fu yed: hierarchi ements for flyi for landing a consist of avid but which are represented b among the capa ion, individua rcraft with ho modologies used AVAILABLE TO THE E NATIONAL TECHNIC SERVICE, SPRINGFI 61 21- No. of Pages	in the e types on the were nc- cal ing in t onics not y the bility l capa- mo- in
for viewing the ge borne avionics equ National Airspace of aircraft common aircraft. To provide the designed and trans tions in the airsp groups consist of different airspace different classes equipment which g required equipmen Once the fra 1974 Aircraft Sta groups, and its c bility groups wer geneous character the analyses, sta	neral aviation (GA) di ipment to the capabili System, and (2) within to the GA fleet in te framework, capability lated into aircraft ca oace system. Two types avionics equipment med segments, in differer of airports; non-hiera ive an aircraft addition t according to FAA reg mework was developed, tistical Master File, haracteristics were st e analyzed to discover istics. This report p atistical tables and ot	ty for an aircra this framework, erms of description pability to perf s of groups evolved archical groups evolved archical groups of an conditions and archical groups of an conditions. the GA fleet, as was distributed udied. In addit subgroups of ai presents the meth ther results. 18. Distribution Statement INFORMATION INFORMATION UNEQUINIA 2210	ft to perform to portray th ve information dics equipment orm certain fu yed: hierarchi ements for flyi for landing a consist of avio but which are represented b among the capa ion, individua rcraft with ho bodologies used	in the e types on the were nc- cal ing in t onics not y the bility l capa- mo- in

PREFACE

The avionics data study described in this report was performed under Project Plan Agreements FA-643 and FA-743 sponsored by the Federal Aviation Administration, Office of Management Systems, Information and Statistics Division. It was undertaken as part of a program to assure the quality and usefulness of general aviation data. The study was based on information collected and processed by FAA through its Aeronautical Center in Oklahoma City, Oklahoma. Several representatives of the Federal Aviation Administration

Several representatives of the federation contributed significantly to the study: Nick Soldo and Carolyn Edwards, AMS-230, guided the project as sponsors; Stephen W. Hopkins, AMS-230, produced data tapes for the analysis; George W. MacArthur, AFS-804, answered numerous questions on avionics functions and regulations. All computer programming, data base manipulation and report generation were the responsibility of Ellen Laviana, of Kentron Hawaii, Ltd.

	Ĩ		5 5 2 3 .	ĕ	ĨĔĴġĨġ		5 2		# 8	4 6 7	12 P			
	tric Meazuros To fiad	I	inches inches feet yards miles		aquara mches aquara raches aquara mileg Bquara mileg acres		ounces pounds shan tan		fluid cunces	guards gallens	cubic feet cubic yeads		f afrankası Tanşaratun	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Apresimate Conversions from Metric Measures West Yes Know Maltiply by To Find	LENGTH	000 9.6.6.5 8.5.8	AREA	0.16 1.2 0.4 2.5	MASS (weight)	0.005 2.2 1.1	VOLUME	0.03 2.1	1.05 82.0	8 	TEMPERATURE (exect)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
	When You Know	8	milimeters Centimeters Meters Receis	I	Aquare Centimeters Aquare meters Rouers Informaters Nectares (10,000 m ²)	-1	وبھیو دیستوں،پر (وہ 2001) دستیں		millinges litters		Cubic maters	TEMP	Celsius térgerenue	
	jatat ĉ		E B e e S		Ĵ*e Î 2		• 2 -		Ē	· ~ ~	Ê		,u	• ۽ ¹ ٻ:
53	31 33	50 	6t et	21 91 Diminin		e t		iram			9	9	•	cw 1 3
, , ,		• 	د ۱۱.۱۱.۱۱.۱۱.	. .	10 2 	'''''	∙ հեւեել.	" "	1 1 1 1	' '' '	• • •	3 , , , , 1, , ,	 .1.1.1.1.1.	
	Symbol		5563		. E " f " : 2		ой.,		ē ē ē		7	Ē	·	
ic Measures	To Fied		Centimeters Centimeters meters kridmeters		Square centimeters Square maters Square maters Square kilomaters Nectors		grams kilograms comes		multitisers multitisers multitisers	interes interes interes	liters Cubic meters	cubic meters	Celarus temperature	
Approximate Conversions to Metric Measures	Methiphy by	LENGTH	2,5 20 0,9 3,5	AREA	6.5 0.08 0.8 2.6 0.4 0.4	111 111	SP.0 2.0 VOLUME	.	128	1	9.6 6.03	TEMPERATURE (eract)	5.3 (after extrementing 121	i
Approximate C	When Yes Knew	1	in Chea Ioei Yarda Miloa	1	Acuter mches Rquart feet Rquart yerds Rquart miles Acutes	ounces	pounds short tons (2000 b)	(Astrona	fluid awars		getions cubic feet cubic	TEMP	f ahrenheit Lenterheit	
	2744		s æ ý ë	•	چ کے <u>ق</u>	3	<u>₽</u>	đ	9 18 17	e 2	ġ. ŗ		•	

-

METRIC CONVERSION FACTORS

iv

CONTENTS

		Page
Section	INTRODUCTION	1
1.	1.1Definition of General Aviation (GA)1.2Background1.3Purpose of Project1.4Source of Data	1 1 2 2
2.	DEVELOPMENT AND METHODOLOGY	5
	 2.1 Fleet Size and Coverage of This Report 2.2 Profile of GA Fleet Avionics 2.3 Avionics Capability Groups 	5 5 6
	 2.3.1 Purpose of Groups 2.3.2 Assumptions 2.3.3 Methodology 2.3.4 Definition of Capability Groups 	6 8 8 9
	2.4 Description of Aircraft Characteristics 2.5 Capability Groups Analysis	15 17
3.	RESULTS	19
	APPENDIXES	
	Appendix A. Aircraft Registration Eligibility, Identification, and Activity Report	83
	Appendix B. Aircraft Statistical Master File Record Layout	8 5
	Appendix C. Airspace Structure	93
	Appendix D. Federal Aviation Administration Regions and Regional Offices	99
	Appendix E. Computed Aircraft Types	101
	Appendix F. Sampling and Contingency Table Methodology	
	GLOSSARY	. 107
	BIBLIOGRAPHY	

LIST OF ILLUSTRATIONS

.

Figure

A.	Hiomanahia Jacoba	Page
	Hierarchical Capability Groups	14
1.	Hierarchical Capability Group 1	68
2.	Hierarchical Capability Group 2	
3.	Hierarchical Capability Group 3	69
4.	Hierarchical Capability Group 4	70
5.	Hierarchical Canability Conv.	71
6.	Hierarchical Capability Group 7	72
0.	Hierarchical Capability Group 8	73
7.	Non-Hierarchical Capability Groups, Non-Grouped Aircraft	
8.	Non-Hierarchical Capability Group 1	74
0	Non-Hierarchical Capability Group 1	75
9.	Non-Hierarchical Capability Group 3	76
10.	Non-Hierarchical Capability Group 4	77
11.	Non-Hierarchical Capability Group 5	
12.	Non-Hierarchical Capability Group 6	78
13.	Non-Hieranghieri g. 1999	79
	Non-Hierarchical Capability Group 7	80
14.	Non-Hierarchical Capability Group 8	81
15.	Non-Hierarchical Capability Group 9	82

vi

•

LIST OF TABLES

Table		Page
А.	BASIC AVIONICS DATA FOR 1974 GA FLEET	7
в.	HIFRARCHICAL CAPABILITY GROUPS	11
С.	NON-HIERARCHICAL CAPABILITY GROUPS	16
1.	HIERARCHICAL VS. NON-HIERARCHICAL GENERAL AVIATION CAPABILITY GROUPS	26
CHAR	ACTERISTICS OF HIERARCHICAL CAPABILITY GROUPS	
2.	PRIMARY USE	30
3.	BASE AIRPORT REGION	32
4.	HOURS FLOWN	34
5.	AGE OF AIRCRAFT	36
6.	COMPUTED AIRCRAFT TYPE	38
7.	AIRCRAFT TYPE	40
8.	ENGINE TYPE	42
9.	NUMBER OF ENGINES	45
10.	NUMBER OF SEATS	46
CHA	RACTERISTICS OF NON-HIERARCHICAL CAPABILITY GROUPS	
11.	PRIMARY USE	48
12.	BASE AIRPORT REGION	50
13.	HOURS FLOWN	52
14.	AGE OF AIRCRAFT	54
15.	COMPUTED AIRCRAFT TYPE	56
16.	AIRCRAFT TYPE	58
17.	ENGINE TYPE	60
18.	NUMBER OF ENGINES	63
19.		64
20. 21.	SUBGROUPS OF HIERARCHICAL CAPABILITY GROUPS	66

1. INTRODUCTION

1.1 DEFINITION OF GENERAL AVIATION (GA)

The term general aviation (GA) refers to that portion of civil aviation which includes all facets of aviation <u>except</u> air carriers holding a certificate of public convenience and necessity from the Civil Aeronautics Board, and large aircraft commercial operators. GA encompasses such varied services as air taxi, air cargo, industry, agriculture, business, personal, instructional, research, patrol and sport flying. GA aircraft range from four engine turbojets to simple gliders and balloons.

1.2 BACKGROUND

GA aircraft owners compose almost 97 percent of the United States civil air fleet¹ and account for approximately 76 percent of total operations at FAA towered airports.² Despite this dominance of the civil air fleet by GA aircraft, the characteristics and capabilities of the GA fleet are subjects which have not been extensively explored in FAA literature.

The FAA's major source of information on the GA fleet is the Aircraft Registration Eligibility, Identification, and Activity Report, AC Form 8050-73, the current version of which is found in Appendix A. Since 1970, FAA has used Part 1 of the form to register annually all U.S. civil aircraft. Part 2 is for GA aircraft only and contains questions on several aircraft characteristics, including avionics equipment, usage, base airport loca-

¹<u>Census of U.S. Civil Aircraft Calendar Year 1975</u>, U.S. Dept. of Transportation, Federal Aviation Administration, (Washington DC, 1976), p. 4.

²<u>FAA Air Traffic Activity Calendar Year 1975</u>, U.S. Dept. of Transportation, Federal Aviation Administration, (Washington DC, 1976) p. 16.

tion, and hours flown. * Reports currently generated from these forms do not provide sufficient information for FAA to assess the GA fleet in terms of machine sophistication, the ability of aircraft to function in the National Airspace System (NAS), and the typical aircraft comprising the fleet.

1.3 PURPOSE OF PROJECT

Accordingly, the purpose of this project is:

a. To enhance the information obtained from AC Form 8050-73 by providing a framework for viewing the GA fleet which would relate airborne avionics equipment to the capability for an aircraft to perform in the NAS.

b. Within this framework, to portray the types of aircraft common to the GA fleet in terms of descriptive information contained in AC Form 8050-73.

This effort will enable the FAA first, to gain insight into the nature of the GA fleet, and second, to measure the impact on the GA fleet of anticipated regulatory changes.

1.4 SOURCE OF DATA

AC Form 8050-73 has been sent out by the FAA in January of every year since 1970 requesting information on the previous year's activities of the aircraft. Part 1 is mandatory for all aircraft, but Part 2 is voluntarily filled out by GA aircraft owners. In the past three years, the response rate for Part 2 has averaged around 73 percent. When the forms are returned to the FAA, they are used, in conjuction with the Aircraft Registration File located at the Aeronautical Center in Oklahoma City, to create the Aircraft Statistical Master (ASM) File on computer tape. Appendix B shows the

2

^{*} In 1978, the form will be discontinued. Part 1 will be replaced by a triennial aircraft registration and Part 2 will be replaced by an annual GA sample survey.

record layout for the ASM file. The work in this project was based on the 1974 GA fleet as represented by the 1974 ASM File, the most current version available at the project's commencement.

2. DEVELOPMENT AND METHODOLOGY

2.1 FLEET SIZE AND COVERAGE OF THIS REPORT

The 1974 GA aircraft fleet, as represented by the 1974 ASM file, contained 185,350 registered aircraft. Although the response rate to Part 2 of the registration form was only 72.8 percent or 134,935 aircraft, avionics information for previous years was found in the records of 34,095 additional aircraft, so that altogether avionics information was available for 169,030 of the 185,350 GA aircraft.

The tables appearing in this report are all based on the 169,030 GA aircraft for which avionics information was available. Some FAA publications, such as the Census of U.S. Civil Aircraft Calendar Year 1974, are based on the entire fleet size of 185,350. Any disagreements in figures between this report and the Census are due to the elimination from this report of the 16,320 aircraft for which no avionics information was available. Other FAA publications, such as General Aviation: Aircraft, Owner and Utilization Characteristics, are based on those fractions of the GA fleet selected to participate in sample surveys. Results of reports such as these are estimates rather than true population values, introducing another cause for discrepancies in figures sampling error. between this report and reports based on samples: In general, however, results of this report agree with General Aviation results when compared with General Aviation interval estimates.

2.2 PROFILE OF GA FLEET AVIONICS

Table A summarizes the basic avionics data provided by the 1974 ASM file for the analysis of the 1974 GA fleet. It shows the number of aircraft containing each piece of avionics equipment appearing on AC Form 8050-73. Table A has only limited usefulness because it does not enable one to ascertain the number of aircraft containing important groups of equipment, but deals solely with individual pieces of equipment. For example, one cannot determine the number of aircraft containing all three components of an ILS system, localizer, glide slope, and marker beacon receivers. The capability groups discussed below are designed to make the analysis of groups of avionics possible.

2.3 AVIONICS CAPABILITY GROUPS

2.3.1 Purpose of Groups

Avionics capability groups (CG's) are the means through which significant groups of avionics equipment are associated with aircraft capability to perform in the NAS. The word "capability" takes on a number of meanings in conjunction with the NAS. It can refer to where in the airspace an aircraft can fly, at what airports it can land, under what flying conditions it can fly, or to what extent it can participate in the air route, landing, and communications systems. Avionics equipment is installed in an aircraft because of the capabilities gained from it; consequently, one should be able to identify an aircraft's general potential capabilities from knowledge of its avionics equipment configuration. Often several pieces of equipment are required to obtain a certain capability in the NAS; it thus becomes necessary to study groups of avionics, rather than individual pieces. The CG definitions are designed to provide the link between groups of avionics equipment and capabilities. In addition, the CG's provide a framework within which other aspects of the GA fleet can be examined.

TABLE A. BASIC AVIONICS DATA FOR 1974 GA FLEET

VHF Communications Equipment

VHF Receiver Capability

Tuner		70177
180 channels	or less	53835
181 channels	or more	85367

VHF Transmitter Capability

20 channels or less	15398
21 thru 180 channels	47407
181 channels or more	80131

ILS Reception Capability

Localizer	86529
Glide Slope	46029
Marker Beacon	71092

Transponder Equipment

64 code	4792
4096 code	66497
Altitude reporting	15633

Navigation Equipment

VOR Receiver One More than one	58470
Distance Measuring Equipment (DME) Automatic Direction Finder (ADF) Weather Radar	32345 73121 7666
Approved Area Navigation Equipment (RNAV) Advisory Circular 90-45	10894

2.3.2 Assumptions

Several assumptions must be made in order to simplify the process of designing the groups and to minimize the number of groups needed. First, it is assumed that an aircraft's avionics equipment defines its capability to perform in the NAS. In actuality, an aircraft's engine size and power, pilot's certification, lack of cabin pressurization, or lack of other types of required equipment may prevent the aircraft from performing at its highest capability level according to its avionics configuration. Second, the capability groups are based on regulations and equipment requirements for the majority of general aviation aircraft. There may be exceptions to the avionics needed for certain capabilities depending on the use of the aircraft, the model of the aircraft, and the pilot's skill at maximizing the capabilities that his avionics equipment gives him. Third, it is assumed that area navigation (RNAV) equipment³ on GA aircraft is comprised of VOR/DME-based course line computers rather than inertial or Doppler systems, since as of January 1, 1975, fewer than 0.5 percent of GA aircraft contained the selfcontained type of RNAV equipment⁴. Thus, RNAV equipment is considered to comply with FAA requirements for both VOR equipment and distance measuring equipment (DME).

2.3.3 <u>Methodology</u>

At the onset of the project, it became apparent that two classifications of avionics equipment existed. The first type consisted of avionics equipment meeting FAA requirements for use of the various aspects of the NAS. The second type was avionics equipment which

³See the Glossary for definitions of area navigation equipment and other technical terms.

⁴Avionics Installation Navigation and Communication Report, FAA/AEM.

gave an aircraft additional capability, but which was not required equipment according to FAA regulations. These two types of equipment necessitated the formation of two types of CG's.

To form the first type of CG, three sets of avionics requirements were obtained, one for flight in different segments of the airspace, another for flight in different flying conditions, and the third for landing at different airports. The three sets of requirements were combined into one set of avionics requirements dealing with the above three aspects of the NAS simultaneously. These combined requirements formed the basis for the first type of capability group. They were augmented by miscellaneous requirements for helicopters, air taxis, and gliders.

The formation of the second type of CG was a simpler task. It involved grouping component pieces of avionics equipment which together would form a complete avionics system for enabling an aircraft to make full use of a landing, communications or navigation system in the NAS. However, except for the instrument landing system (ILS), it was found that an aircraft can gain full use of a system in the NAS by installing only one piece of airborne avionics equipment. Consequently, the second type of CG consists mainly of "groups" containing one piece of equipment each.

2.3.4 Definition of Capability Groups

Definitions of the two types of CG's mentioned above, known as hierarchical and non-hierarchical CG's respectively, are given below in terms of the avionics equipment found in AC Form 8050-73. A glossary at the end of the report explains the numerous terms relating to avionics equipment and the NAS found in the definitions below. Appendix C shows the various segments of the airspace and the regulations pertaining to the airspace, airports, and flying conditions.

a. <u>Hierarchical CG's</u>

The FAA has established airborne avionics equipment requirements for aircraft use of the various segments of the NAS. In this regulatory sense, an aircraft's avionics equipment determines its capabilities to perform in areas of the NAS. FAA regulations deal with three basic capabilities: (1) to fly in different segments of the airspace, (2) to fly in visual flight rules (VFR) and instrument flight rules (IFR) flying conditions, (3) to land at different classifications of airports. In the formation of CG's of avionics equipment which relate to these three capabilities, the groups take on a hierarchical nature, that is, there is an order to the groups. In general, the avionics equipment and the associated capabilities for one capability group are a subset of the avionics equipment and the associated capabilities for the next higher group.

These groups have the additional properties that they are mutually exclusive and exhaustive. When assigning individual aircraft to CG's, mutual exclusiveness means that an aircraft can be assigned to one and only one group. Exhaustiveness means that every aircraft will fall into a group.

Table B describes the hierarchical CG's in terms of avionics equipment and capabilities. The capabilities described represent the highest level at which an aircraft has avionics potential to participate in the NAS. Generally, an aircraft can also participate at all lower levels. Each group of equipment below is described in terms of (1) airspace capability, (2) flying condition capability, (3) airport capability. Exceptions to airport and airspace capabilities are noted for helicopter and glider operations, respectively.

Figure A is a schematic diagram of the hierarchical capability groups, which summarizes the relationship of three types of aircraft capabilities to their required avionics equipment, namely flying conditions, airspace, and airport capabilities. To determine the capabilities associated with a particular avionics box, one must position the box relative to the lines of the capability of interest. The capabilities increase from top to bottom. Generally, they are maximums, i.e., if an aircraft has reached a certain level with regard to one type of capability, it can also perform at lower levels with regard to the type of capability.

10

TABLE B. CONTINUED

AVIONICS

Group 4

VOR or RNAV

CAPABILITIES

- (3) Non-TCA controlled airways Group III TCA's Helicopters with 4096 code transponders...Group II TCA's All helicopters...Group I and II TCA's below 1000 feet AGL
- (1) Up to and including 12,500 feel MSL
 Gliders...Up to and including 18,000 feet MSL
 VOR airways below 12,500 feet MSL
 RNAV...Low altitude RNAV airways below 12,500 feet MSL
- (2) IFR flight
- (3) Non-TCA controlled airports Group II TCA's Helicopters...Group I TCA's below 1000 feet AGL
- (1) Non-positive controlled airspace
- (2) VFR flight, day and night
- (3) Uncontrolled airports Group III TCA's
- Non-positive controlled airspace
- (2) VFR flight, day and night
- (3) Non-TCA controlled airports Group III TCA's Helicopters...Group I TCA's
- Non-positive controlled airspace VOR airways
- (2) IFR flight

<u>Group 5</u> 4096 code transponder Altitude encoding equipment

Two-way communications

4096 code transponder

<u>Group 6</u> Two-way communications 4096 code transponder Altitude encoding equipment

Group 7 Two-way communications 4096 code transponder Altitude encoding equipment VOR

TABLE B. HIERARCHICAL CAPABILITY GROUPS

AVIONICS

Group 2

<u>Group 1</u>

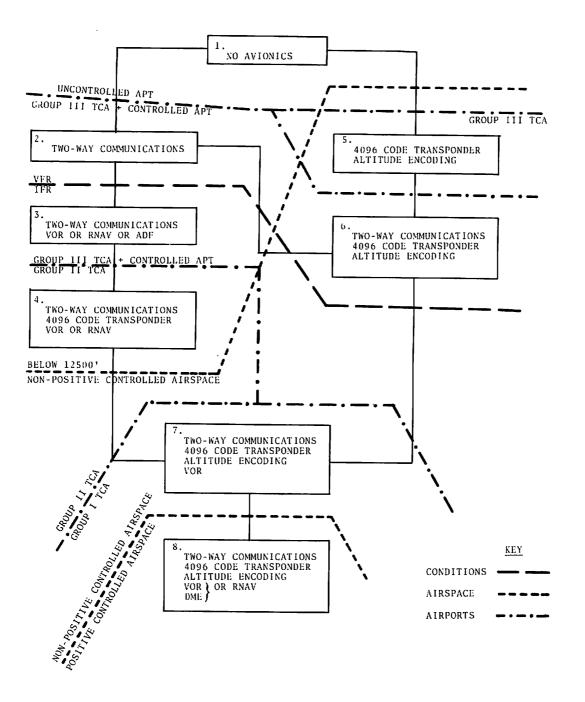
No regulatory avionics

CAPABILITIES

- (1) Up to and including 12,500 feet mean sea level (MSL) Gliders...Up to and including 18,000 feet MSL ADF...Colored airways below 12,500 feet MSL VOR or RNAV...VOR airways below 12,500 feet MSL RNAV...Low altitude RNAV airways below 12,500 feet MSL
- (2) VFR flight, day and night
- (3) Uncontrolled airports
- Up to and including 12,500 feet MSL
 Gliders...Up to and including 18,000 feet MSL
- (2) VFR flight, day and night
- Non-TCA controlled airports Group III TCA's Helicopters with 4096 code transponders...Group II TCA's All helicopters...Group I and II TCA's below 1000 feet above ground level (AGL)
- (1) Up to and including 12,500 feet MSL
 Gliders...Up to and including 18,000 feet MSL
 ADF...Colored airways below 12,500 feet MSL
 VOR or RNAV...VOR airways below 12,500 feet MSL
 RNAV...Low altitude RNAV airways below 12,500 feet MSL
- (2) IFR flight

Two-way communications

Group 3 Two-way communications VOR or Automatic Direction Finder (ADF) or RNAV


TABLE B. CONTINUED

AVIONICS

Group 8 Two-way communications 4096 code transponder Altitude encoding equipment VOR DME or RNAV

CAPABILITIES

- Group I TCA's (3)
- Positive controlled airspace Jet routes RNAV...RNAV routes (1)
- (2) IFR flight
- (3) Group I TCA's

FIGURE A. HIERARCHICAL CAPABILITY GROUPS

b. Non-Hierarchial CG's

Many kinds of avionics equipment exist which give an aircraft additional capabilities to the three types discussed in the previous section. Whereas the latter capabilities are derived from regulatory considerations, those to be discussed in this section are based on engineering and safety considerations. The avionics CG's of this section have none of the properties of the previous groups. That is, they are not hierarchical in nature, nor are they mutually exclusive and exhaustive. The CG's are described below in Table C in terms of the avionics equipment and associated capabilities.

2.4 DESCRIPTION OF AIRCRAFT CHARACTERISTICS

Nine aircraft characteristics were available on the 1974 ASM Files for analysis in the framework of the newly developed CG's. They are listed below with appropriate comment.

a. Primary use of aircraft during 1974.

b. Base airport region: See Appendix D for an FAA regional map.

c. Hours flown during 1974: This variable was discretized into 50-hour intervals for easier reporting.

d. Age of aircraft in 1974: This variable was discretized into 5-year intervals for easier reporting.

e. Computed aircraft type: The thirteen computed aircraft types combine the four aircraft characteristics of engine type, number of engines, aircraft type (simple), and number of seats into meaningful combinations for the GA fleet. See Appendix E for type definitions.

f. Aircraft type (simple).

g. Engine type.

h. Number of engines.

i. Number of seats.

TABLE C. NON-HIERARCHICAL CAPABILITY GROUPS

AVIONICS	CAPABILITIES
Group 1	
Localizer	Partial use of ILS at airports.
Group 2	
Localizer	Partial use of ILS at airports.
Marker Beacon	
Group 3	
Localizer	Full use of ILS at airports.
Marker Beacon	
Glide Slope	
Group 4	
RNAV	Area navigation capability.
<u>Group 5</u>	
Weather Radar	Detection of storms in aircraft's route.

16

2.5 CAPABILITY GROUPS ANALYSIS

The identification of subgroups of aircraft with homogeneous characteristics within each CG required the use of contingency table and sampling techniques. The methodology used in the identification process is described in Appendix F.

3. RESULTS

DISCUSSION OF RESULTS

Based on the 169,030 aircraft for which avionics data were available, the following results were obtained:

Table 1: Hierarchical versus Non-Hierarchical Capability Groups

This table shows the distribution of GA aircraft into hierarchical and non-hierarchical CG's, beginning with the least sophisticated groups in the upper left-hand corner of the table. Excluding the non-hierarchical CG category, a general diagonal trend can be seen from upper left to lower right corners in the distribution of aircraft. This means that as aircraft increase their capabilities in the hierarchical CG's, they also tend to increase their non-hierarchical equipment capabilities. For example, aircraft with no regulatory avionics (hierarchical CG 1) would not generally possess complex weather radar or area navigation equipment. On the other hand, aircraft in hierarchical CG 8 would not likely be without sophisticated weather, landing and navigation equipment.

Some additional observations on the distribution of GA aircraft are below:

- a. Almost 93 percent of GA aircraft cannot fly in positive controlled airspace (above 18,000 MSL).
- b. Hierarchical CG's 5 and 6 together contain only 0.13 percent of the GA fleet. Examination of the avionics equipment associated with these groups reveals that both include transponder equipment, but neither include navigation equipment. One includes two-way communications. This suggests a reason for the small number of aircraft in these groups and the comparatively large number in the remaining groups to be that the common path of acquisition of avionics proceeds from communications to transponder to navagation equipment.
- c. Only 0.49 percent of the GA fleet falls into non-hierarchical CG 2, Localizer and Glide Slope. This would suggest that

the normal pattern in acquiring ILS equipment is begin with a localizer, then add marker beacon equipment, and finally add a glide slope receiver.

d. 79,276 or 47 percent of the GA fleet possess none of the avionics appearing in the non-hierarchical CG's. Of these aircraft, 73,160 fall into heirarchical CG's 1, 2, and 3, and comprise 72 percent of these 3 hierarchical CG's.

Tables 2 through 10: Characteristics of Hierarchical Capability Groups

These tables show the distributions of the nine available aircraft characteristics across the eight hierarchical CG's. Several generalizations about hierarchical CG's and the nature of the GA fleet were revealed in these tables and are listed below.

- a. As hierarchical CG's increase in order of sophistication, the predominant uses also grow in sophistication from personal, to personal and business to executive, business and personal.
- b. There are some differences among the distributions of hierarchical CG's across base airport region, primarily due to CG's 5 and 6 which are notably smaller than the other CG's. Other variations are evident from the table.
- c. Those aircraft containing more avionics equipment and capabilities are flown more hours than those aircraft with smaller investments in avionics equipment.
- d. New aircraft (0-10 years) comprise a substantially larger percentage of the higher order CG's than the lower order groups.
 Old aircraft (over 25 years) comprise a substantially larger proportion of lower order groups than higher order groups.
- e. The computed type of aircraft becomes more sophisticated as one moves from low order to high order CG's. Not only does this apply for computed aircraft type, but also for the four characteristics individually which are combined to form the computed aircraft type (simple aircraft type, engine type, number of engines, number of seats).

Tables 11 through 19: Characteristics of Non-Hierarchical Capability Groups

These tables show the distributions of the nine available aircraft characteristics across ten non-hierarchical CG combinations. Generalizations on the nature of non-hierarchical CG's and of the GA fleet as a whole were obtained from these tables and are listed below.

- a. As non-hierarchical groups increase in sophistication, the predominant uses change from personal and business, to personal, business and executive, to business and executive.
- b. Aircraft falling into the non-grouped category are older than those aircraft falling into the other non-hierarchical CG's.
 Within the latter groups, there is a gradual decrease in aircraft age moving from less to more sophisticated groups.
- c. The distribution of the non-hierarchical CG's over the base airport regions are more uniform than the distributions for the other eight characteristics. Yet, differences are apparent. The greatest departures from the average occur in CG's 6, 8, These three CG's all contain weather radar as one of and 9. their avionics requirements; in fact, groups 8 and 9 are subsets of group 6. It would seem therefore, that the weather radar is the determinant of the distribution. The weather radar is found in unusually high concentrations in the southern, southwestern, and eastern regions, while it is more scarce than normal in the Rocky Mountain and western regions. Weather patterns of these regions provide the probable explanation for this phenomenon. Storms in Eastern United States cover wide areas with clouds, making the location of the storms' electrical centers difficult. In the West, the storms are more concentrated, and easier to track visually. Thus weather radars are more prevalent in the East.
- d. Those aircraft containing more avionics equipment and capabilities are flown more hours than those aircraft with small investments in avionics equipment.

e. The computed aircraft type becomes more sophisticated as one moves from lower order to higher order CG's. Not only does this apply for computed aircraft type, but also for the four characteristics individually which are combined to form the computed aircraft type (simple aircraft type, engine type, number of engines, and number of seats).

Tables 20 and 21, Figures 1 through 15: Subgroups of Hierarchical & Non-Hierarchical Capability Groups

These figures and tables show the results of the search for subgroups of aircraft with homogeneous characteristics within each CG. A general discussion of the results follows.

The nature of the aircraft within individual capability groups was more diverse than expected. Only 50 percent on the average of the GA aircraft within any one CG could be classified into subgroups, even when on exception of the number of descriptive factors reduced to two or when the minimum subgroup size was dropped to as low as 3 percent. Approximately six subgroups of aircraft with two to four homogeneous characteristics were identified for each CG. Aircraft which did not fall into large subgroups were grouped into an "other" category.

Nonetheless, the study of the joint characteristics of the GA fleet revealed information about the nature of the CG's which was in agreement with the information revealed by the study of individual characteristics in Tables 2 through 19. A summary of the analyses is shown in Tables 20 and 21. It can be seen that the lower order hierarchical and non-hierarchical CG's contained subgroups of simple aircraft such as older fixed-wing single engine piston aricraft with 1-3 seats which were not flown and older personal use aircraft flown less than 100 hours. As the CG's became more sophisticated, so did the types and uses of aircraft. Simultaneously, the amount of flying time increased, and age decreased. Examination of the highest order CG's revealed subgroups of complex aircraft such as new turboprop aircraft and

new two engine aircraft used for executive purposes flown more than 400 hours during the year. In Tables 20 and 21, the capability groups and the subgroups are arranged in order of sophistication beginning in the upper left hand corner of the report. The diagonal trends reveal the strong positive relationship between avionics sophistication and characteristics sophistication. More detailed results of the individual CG analyses are shown in Figures 1 through 15.

TABLE 1

The key following the table shows the interpretation of the symbols and numbers heading the rows and columns of the table. The comments below will facilitate the interpretation of the table:

- a. Aircraft assigned to hierarchical CG 1 (No regulatory avionics) contain either no avionics equipment whatsoever or a combination of equipment which does not match or exceed the specified requirements for any other CG.
- b. Hierarchical CG 2, (Two-way communications), indicates an aircraft has some combination of VHF receiver and transmitter capabilities, and not necessarily a two-way radio unit.
- c. Since non-hierarchical groups are not all mutually exclusive (that is, they overlap), the columns do not add to the counts at the bottom of the table. The first four groups, L through LMG, are mutually exclusive, and the last three groups, IR, IW and All, are mutually exclusive. However, there is some overlap between the first six groups and the last three groups, and between the first four and the next two groups.
- d. Non-grouped aircraft, NG, are those aircraft possessing none of the avionics covered by the other nine non-hierarchical CG's.

TABLE 1. HIERARCHICAL VS. NON-HIERARCHICAL GENERAL AVIATION CAPABILITY GROUPS

. HCG . ION-H	. <u>1</u>	. 2	. 3	• 4 •	. 5	• • 5 •	7	. 9	ALL
L .	172	. 127	13390	4316	1	2	. 183	• • 34 •	. 18750
LG	11	• 4 ·	399	370	0	c .	21	. 19	. 824
LH	100	44	7331	13836	9	. 1	. 790	. 499	. 22610
LKO	232	45	4431	. 26186	64	13	. 1609	. 11733	. 44345
RNAV	301	0	3746	. 3433	32	0	0	. 3362	. 10894
LSAD	21	2	364	2045	18	2	30	. 5184	. 7466
I,R	15	0	349	1828	8	0	0	. 1345	. 3565
I,W .	11	0	242	1663	6	2	26	. 3396	. 5346
ALL	1	o	57	345	11	0	0	1771	2185
ы с	25813	3703	40639	5377	72	38	370	57	79276
CNT	26632	6930 .	68485	51150	157	56	2978	12442	169030

NON-CLASSIFIABLE AIRCRAFT NUMBER 16320

·

.

. .

· · ·

26

والمحاج والمراجع المراجع المستريات المحاج المراجع المراجع ومحاج والمحاج والمحاج المراجع المحاج المحاج

.

TABLE 1. CONTINUED

<u>KEY</u>

Hierarchical Capability Groups

- 1. No regulatory avionics
- 2. Two-way communications
- 3. Two-way communications VOR or ADF or RNAV
- Two-way communications 4096 code transponder VOR or RNAV
- 5. 4096 code transponder Altitude encoding equipment

- Two-way communications 4096 code transponder Altitude encoding equipment
- Two-way communications 4096 code transponder Altitude encoding equipment VOR
- 8. Two-way communications 4096 code transponder Altitude encoding equipment VOR DME or RNAV

Non-hierarchical Capability Groups

- L: Localizer
- M: Marker beacon
- G: Glide slope
- R, RNAV: Area navigation system
- W, WRAD: Weather radar
- I, LMG: Complete ILS system
- ALL : I, R and W
- NG: Non-grouped aircraft

TABLES 2 THROUGH 19

These reports show three numbers in each cell. The first is the number of aircraft falling into the particular capability group-category combination represented by the cell. The second number is the percent of the row or category that the number of aircraft represents. The third number is the percent of the columm or capability group that the number of aircraft represents.

The key appearing at the bottom of each table gives the avionics associated with the CG's. Hierarchical group reports are additive across the columns as these groups are mutually exclusive. The numbers in the right-hand columns of the non-hierarchical group reports are the marginal distributions of the GA fleet across the categories, but are not row totals since non-hierarchical CG's are not mutually exclusive.

.

		•••••••••			******	*******			
	, 1 ,	2	3	4	5	6	7	8	SUN
EXECUTIVE	54	77	395	1765	15	2	95	3635	6236
RNW X Column X	0.87 0,20	1,11 ,		28,30 3,45	0,20 9,55		1,52 3,19	61.47 30.81	
BUSINESS	799	323	7024	12300	30	10	787	3561	2483
ROM Z Column z	3.22 3.00	1.30 4.66	28,30 10,23	49,52 24,05	0.12 19.11	0,94 17,86		14,34 28,62	
PERSONAL	7514	2189	27490	16944	29	5	976	1519	56666
POW X COLUHN X	13.26 28.21		48,51 40,02	29,90 33,13	0.05 18,47	0.01 8.93			
AERIAL APPLICATION	2654	371	370	164	4,	••••••	7	50	3596
RNM X Cnlumn X	73,80 9,97			4.56 0.32	0.11 2,55	0.0	0,19 0,24		
INSTRUCTION	426	231	5260	2774	1	3,	124	134	
ROH X Column X	4,76 1,60					0.03 5,36			
AIR TAXI	>1 .		907	1972	••••••• • •		187	1068	4447
ROW X . Column X .	1.15	5.60	20.40	44.34 3.86	0.20	0.09			

30

.

TABLE 2. CONTINUED

GROUP	1	2	3	4	5	6	7	8	
INDUSTRIAL/SPECIAL	101	357	641 .	531	1,	4 .	56	100	1793
HOW I Column I	5.65 0.38	20.02 5.18	35.75 0.93	29.62 1.04	0.05 0.64	0,22 7,14	3,12 , 1,68 ,		
ATRCRAFT PENTAL BUS.	536	120	207B	2515	3	1	161 .	195	5309
R/IW % . CI)LUMN % .					0,06				
DTHER	473	288	866	621	0	7	47	250	2531
면이번 호 · CUFAMA 호 ·	18.69 1.78	11.38 4.16	34.22 1.26	24.54 1.21	0.0	0.28 12.50	1.86 1.55	9,05 1.84	
INPUTEDINGT REPORTED.	14524	2723	23649	11564		, os	538	1777	54560
200 2 Column 2	26.21 53.78	4.98 39,20	43.27 31.43	21.15 22.61	0.12 41.40	0,04 35,71	0,98 18,07	3,25 14,28	\$2.3ª
TOTALS	26635	6930	68685	51150	157		2978	12442	169030
Pi)H X .	15,70	4.10	40.63	30.26	0.09	0.03	1,76	7,36	

31

GROUP

- 1. No regulatory avionics
- 2. Two-way communications
- 3. Two-way communications VOR or ADF or RNAV
- Two-way communications 4096 code transponder VOR or RNAV

GROUP

5. 4096 code transponder Altitude encoding equipment

KEY

- Two-way communications 4096 code transponder Altitude encoding equipment
- Two-way communications 4096 code transponder Altitude encoding equipment VOR

GROUP

8. Two-way communications 4096 code transponder Altitude encoding equipment VOR DME or RNAV

•

...

	1	2	3	4	5	6	7	8	SUM
NEW ENGLAND	1047	246	2463	1796	3,	z .	183	468	6208
<u>ром х</u> Спрани х	16.87 3.93		39,67 3,59	28,93 3,51					
FASTERN	3195	673	7889	7396	21	7	555	2087	21823
RDM X Column X	14.64 12.00				0,10 13,38				
SOUTHERN	3502	849	9319	8224	34 ,	3 .	411	2281	24623
RON X Column X	14,22			33,49 16,08	0,14 21.66				
GREAT LAKES	5278	1003	13613	9732		7	464	2484	32603
RON X Column X	14.19	3,08 14,47	41.75 19.82	29.85 19.03	0.07	0.02 12.50	1.42		
CENTRAL	8155	275	5044	3361	19	5 .	191	806	11919
RGN X Column X	18.61 0.33			28.20	0.16 12.10		1.60 6.41	6,74 6,48	
ROCKY MOUNTAINS	. 1537 .	187	3937	2319	11	1	97 .	396	8665
RO# S Column S	17.70			26,70	0.13.		1,12 . 3,26 .	4.56	

32

TABLE 3.	CONTINUED
----------	-----------

	GROUP	1	2	3	4	5	6	7	8		
	NORTHEESTERN	1687	590	4356	2504	3	5	127	406	9635	
	POA X Column X	17.42 n.35									
	ALSTERN	3458	1494	10777	8705	ii ,	13		• 1461	, 26448 ,	
	ROW X COLUMN X	13.04 12.48		40.67							
	SOUTHWESTERN	. 4121	863	8355	5662	27	9	362	1965	22395	
	ROM 2 201045 2	1A.40 15.47				0,12 17,20				13.25	
	,PACIFIC	29	36	212	89	0	1	. u	. 6	379	
	80# 2 Column 2	7.65 0,11		55.94 0.31			0,26 1,79				
	.ALASKEN	546	50A	2569	273	6	3	21	39	3965	
		13.77 2.05								2,35	
	FOREIGN	16	4	138	63	0	0	3	23	247	
	R0w 1 C0LU45 1	6,48 0,06			25,51 0,12			1.21 0,10			
	1/1141 S	20032	n930	nd685	51150	157	56	2978	12442	169030	
'p	ີ່ ພິກ « %	15,76	4.10	40.63	30,26	0.09	0,03	1.76	7,36		
GROUP	••••••		GROUP	-	<u>(EY</u>	• • • • • • • • • • •		GR	OUP	• • • • • • • • • • •	
0	• ··· · · · · · ·			Two-way communications 4096 code transponder VOR or RNAV					7. Two-way commun 4096 code tran Altitude encoc VOR		
	3. Two-way communications VOR or ADF or RNAV			5. 4096 code transponder Altitude encoding equipment 8							

Altitude encoding equipment Two-way communications 4096 code transponder Altitude encoding equipment

nications nsponder ding equipment

8. Two-way communications 4096 code transponder Altitude encoding equipment VOR DME } or RNAV

.

TABLE 4. HOURS FLOWN

• •

. . 5 . 6 , 7 SUM . 3 2 8 5465 1360 12021 3637 1 - 49 17 . 11 . 209 463 . 23183 . RDH X 23,57 5,87 51,85 15,69 0.07 0.05 0.90 2.00 20,52 , 19,62 , 17,50 , 7,11 , 10,83 , 19,64 , 7,02 , 3,72 . 13.72 . COLUMN X • 50 - 99 2590 924 12078 7444 16 3. 420 . 867 . 24342 . 80a X 10,64 . 3.80 . 49.62 . 30,58 . 0,07 . 0,01 . 1,73 . 3,56 . COLUNN X . 9.73 . 13.33 . 17.58 . 14.55 . 10.19 . 5.36 . 14.10 . 6.97 . 14.40 . • • • • • . • 1177 : 11 502 6959 7896 1306 18319 100 = 149 9 469 . 6.43 2.74 37.99 43.10 0.05 0.01 2.56 7.13 4.42 7.24 10.13 15.44 5.73 1.79 15.75 10.50 10.84 20- 1 . COLUMN X • . 587 226 3166 4985 6. 150 - 199 1 . 308 . 1162 . 10441 . 5.62 , 2.16 , 30.32 , 47.74 , 0.06 , 0.01 , 2.95 , 11.13 , R14 X COLUHN X 2,20, 3,26, 4,61, 9,75, 3,82, 1,79, 10,34, 9,34, 6,18 197 2357 4096 200 - 249 542 . 5. 2 289 1259 8747 6.20 2,25 26.95 46.83 0,06 0,02 3,30 14.39 R0+ 1 2,04 , 2,84 , 3,43 , 8,01 , 3,18 , 3,57 , 9,70 , 10,12 , COLUMN X 5.17 . • • • • . . • • 363 . 118 1242 2343 .250 - 299 7 3, 142, 871, 5089, 7.13 . 2.32 . 24.41 . 46.04 . 0.14 . 0.06 . 2.79 . 17.12 . 8UM X . COLUMN X 1,36 1.70 1.81 4,58 4,46 5,36 4,77 7,00 3,01

34

TABLE 4. CONTINUED

	GROUP	1	1 A DI 2	ыс 4. З	4	אטבט 5	6	7	8		
			ے ••••••	ر. • • • • • • • • • • •	••••••	•••••••					•
	300 - 349	395	157	1267	2173	5	1	153 .	956	5080	•
	РОА Х СОЦИЧИ Х	7,78		24,94 1.84			0.02				
	,340 - 399	197	91	755	1275	5	2	72	650	3447	
	* ROA X COLUMN X	6.47 0.74					0,07, 3,57,				
	400 - 449	249	97	821	5451	5	1	72	475	3140	•
	000 X COLUMN X	7,93					0,03				
	.450 - UP	743	535	4370	4515	18	11 ,	306	246.0	18988	
	. ⊮ก⊮ ≵ . Cาเปษพ X	5.72 2.79		6.36	h.83	0,14 11,46			19,13 19,96		•
	NUT FLOWN	8400	995	4225	584	7	6	46	118	14381	
	* 2114 2 • CILUMN 2 *	58,41 31,54			1.14					8,51	
	IMPUTED HOURS	5924	1728	19424	10980	58	14	492 .	1659	40279	• • •
	• เกาพ 2 • COLUMN 2	14.71 22.24			27.26 21.47	0.14 36,94			4.12 13.33		•
	, TOTALS	26632	6930	68685	51150	157	56	2978	12442	169030	•
	• R04 %	15,76		40.63	30.26		0.03		7,36		
GROUP 1. No regulato 2. Two-way com		UP Two-way 4096 cc	ode tran	<u>KEN</u> icatior	GF GF	COUP 6. Two- 4096	o code t	municat ranspon	der		Two-way communications 4096 code transponder
3. Two-way com VOR or ADF	munications 5.	VOR or 4096 cc Altitud				7. Two- 4096	way com code t	ncoding municat transpon ncoding	ions		Altitude encoding equip- ment VOR } or RNAV

TABLE 5. AGE OF AIRCRAFT

.

.

.

		: 1	2	3	4	5	6	. •	•	6 1 1 1
		• • •						7.	ه ۶ •	SUM
0 - 4	YF 493	3144	1247	8120	11549	44	27	613 .	3049	28243
	ROW X COLUMN X	11.13			40,89 22,55	0.16 28.03	0,10 48,21			
5 - 10	YEARS	2723	1317	18792	17887	31 .	9	1055	4877	40091
	р <u>о</u> н х Согони х	5,83		40.25 27.36	58,31 54,97					
11 - 15	YEARS	1679	732	10792	9560	в.	5	525	1671	25084
	2012 UMN X	6,70 6,30		43.05 15.71	38,53 18,89	0,03 . 5,10 .				
6 = 20	YEARS	1180	558	10782	5873	11 .	5,	386	692 ,	19487
	P()* 2 C()LUMN 2	6.06 4.43		55.33 . 15.70 .						
21 - 25	YEARS	, 865 ,	357	5219	1828	7	4	141	173	8594
	RŪ4 X Culum⊳ X	10,07 3,25		60.73 7.60						
26 - 30	YEARS	8909	1525	11248	1391	31 ,	6	88	131 .	23329
	R04 X COLUMN X	38,19		48.21		0.13.	0.03.			

36

TABLE	5.	CONT	INUED
-------	----	------	-------

GROUP	1	2	3	4	5	6	7	8	
51 - 35 YEARS	3935	432	1005	\$54	4,	0	18	136	5884
R04 X Cilumn X	66,88 14,78	7.34 6.23	17.08	6,02 6,02	0.07 2.55	0.0 0.0	0.31		
OVER 35 YEARS	1340	134	248	63	1	9	3,	12	1801
ROM 1 COLUMN 1	74.40 5.03	7.44 1.93	15.77	3,50 0,12	0.06 . 0.64 .	0.0	0.17	0,67 0,10	1.07
NOT REPORTED	2857	578	2479	2545	20	3,	149	1301	9432
ROM X COLUMN X	28.77 10,73	5.82 4.34	24,96 3,61	25.62 4.98	0.20 12.74	n.03 5,36	1.50 5.00	13.19 10,46	5,88
INTALS	26632	6930	68685	51150	157	56	2978	12442	169030
PUM 2	15.76	4.10	40.63	30,26	0.09	0.03	1.76	7.36	•

GROUP

- 1. No regulatory avionics
- 2. Two-way communications
- 3. Two-way communications VOR or ADF or RNAV

GROUP

- Two-way communications 4096 code transponder VOR or RNAV
- 5. 4096 code transponder Altitude encoding equipment

KEY

Two-way communications
 4096 code transponder
 Altitude encoding equipment

GROUP

- 7. Two-way communications 4096 code transponder Altitude encoding equipment VOR
- 8. Two-way communications 4096 code transponder Altitude encoding equipment VOR DME or RNAV

TABLE 6. COMPUTED AIRCRAFT TYPE

.

		 	~	~		•••	۰۰۰	۰۰۰ ۲		
ТүрЕ	בחנטע צ גנוא צ נ	21164 21164 35,85	3250 5255 47.03	30170 51,13 43,93	4065 6.89 7.05	0,08 31,21	11 11.02 19.64	221 221 7,42	83 0.14 0.57	59005 24.91
	ביורטאני צ אווא ג אווא	2198 2.75 8.25	9n0 1113 12,99	35270 44.25 51.35	35857 35857 44.96 70.10	5 1 0 05 32 43	13 13 23,21	2267 2267 2.94 76.12	8192 8192 4.05	147 uf
	3 הואי ג כוונעאי ג	197 197 1.41	5 c, 19 9 1 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7726	26 0,19 16,56	U 3M CO CU	508 508 2,21	4235 4235 30,39 34,05	1.5059 8,25
• • • ₩ • 4 • ►	а 101 голи 101 голи	198 3,55 0,74	0,63 0,51	807 807 14.46			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	1365 1365 35,22 15,79	5579°
т үрЕ	כטרחאי א אנואי א ב	22 26 7,86	3 M Q 7 Q 7 D	103 35,79 0,15	65 63 0.19	6 C C Q Q	1 0,56 1,79	2.50	43 17.14 0,59	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 14 РЕ	היייי אחא ביונעייע צ ביונעייע צ			5: 5: 0.02	244 244 17 44 0 48	0 22	0 0 1	1 0 0 0 0	1104 70,87 8,87	1,583 1,583 1,853

•

	GROUP	1	2	3	4	5	6	7	8		
	: YPE 7	5	• • [j	25	128	: 2	. 0	1=		529	•
	in the state Colored State	0,92 0,92		4.73 0.54	24.20	. 0.35 . 1.27	. 0.0 . 0.0	. 2.65 . 0.47	7.11 - 2.65	0.31	•
	TYOF A	59	. 12	: 51	• • 70	. 0	. 0	: 3	34	. 214	•
	Heller 2 Collume 2	. 0,55 . 50'AU		, 14,16 , C,US	34.70 0.15	. 0.0 . 0.0	. 0.r . 0 r	. 1.37 . 0,10	• 17.35 • 0.31		•
	Ττμι q	• • •	3	• 4	68	••••••	······			1510	•
	ana ¥ Chronos ¥	0.36 0.02	0.23 0.04		5.17 J.13			0.0	13,62 9,40		•
	ттин 10 Дом <u>х</u>	. 1 . 0.ne			. с		n	• •			
	Cauth 2	0.06	0,0	. 0.00		0.n v.0	0.0	0,0 , 0,0	• • • • • • • • • • • • • • • • • • •		• • •
	T845-11	1325	1354	330	47	A	11	13	•••••		• •
	ing san Ting san sa	-2,47 	43,40 17,54		1,52 0,09	0.70 5.10		0.52 0.34	0,19 6,05	. 1,63	• • •
	11-4 12	41	224	46a .	365	1	4	42	31	1214	
	9-14 <u>2</u> C.S. JHN <u>2</u>	\$.15 9,15	10,15	41.65 0.7-						0.72	
	1106 13	1-20	1446	30	7	•••••	7	3	1	2566	
	Horn 2 Eith corr, 2	55.54 5.55	42.52 15.07			0.23 3.82	0.27 12.50	0.12	0.04 6.01	1,52	
	1 : t = 1 S	enuse .	6430		51150	157	۰۰۰۰۰ ۲۰	2476	12442	104030	
	. H ^r in 2	15.76	4.10	40.65	\$û,28	0.09	0.03	1,76	7.50		
GROUP 1. No regulat 2. Two-way cc 3. Two-way cc	ommunications		40 VC	96 cod R or R	- communi e trans NAV	ponder		(40	96 code	communications e transponder encoding equip
VOR or ADF					e trans encodi						communications transponder

TABLE 6. CONTINUED

6. Two-way communications 4096 code transponder Altitude encoding equipment

sponder ing equipment ications 4096 code transponder Altitude encoding equipment

VOR } or RNAV

39

GROUP

TABLE 7. AIRCRAFT TYPE

	1	2	3	4	5.	6 .	7	8	\$U≓
GL10ER	1121	1036	33	 4 .	· · · · · · · · · · · · · · · · · · ·	•••••••• 0	•••••••••• 0 •		2195
RUH X	51.07 4.21						0.0	0.0	1,30
• • • • • • • • • • • • • • • • • • •	298	50	3	د	5,	7	0	1	366
R04 X Column X	81.42 1.12					1.91 12.50	0,0 ,	0.27 0.01	
BI IMP/DIRIGIBLE	. 1	0	0	1	0	0	3,	υ,	5
200 % CUTAN %	00.00 00.0		0,0	0,00 20,00	0.0		60.00 . 0,10 .		9,00
FIXED WING SINGLE	23400	4171	65463	39974	100	24	2490	3285	138907
RON X CULUMN X	16.85 87.86		47.13 95.31	28.78 78.15	0.07 63.65	0.02 42.86	1.79 83,61	2.36 26.40	
FIXED WING MULTI	PLE 446	95	2350	10757	42	10	433	9119	23252
RC4 X COLUMN X	1.92		10.11 3.42	46,26 21.03	0,18 26,75				
POTORERAFT	1366	1573	836	412	9	15	52	37	. 4305
ROA X COLUMN X	31.73	36,66	19.42	9,57	0.21	0.35	1,21		

.

TABLE 7. CONTINUED

GROUP	1	2	3	4	5	6	7	8	
NOT REPORTED	. 0.	0	0	o .	0	. 0	•••••••••••••••••••••••••••••••••••••••	•••••••	
201 X 201044 X	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0
TUTALS	26632	6930	:68685	51150	157	56	2978	12442	169030
R()+ X	15,76	4.10	49.63	30,26	0,09	0.03	1,76	7.36	

GROUP

- 1. No regulatory avionics
- 2. Two-way communications
- 3. Two-way communications VOR or ADF or RNAV

GROUP KEY

- 4. Two-way communications 4096 code transponder VOR or RNAV
- 5. 4096 code transponder Altitude encoding equipment
- Two-way communications
 4096 code transponder
 Altitude encoding equipment

GROUP

- 7. Two-way communications 4096 code transponder Altitude encoding equipment VOR
- 8. Two-way communications 4096 code transponder Altitude encoding equipment VOR DME or RNAV

	• • • • • • • • • •								
	1	2	3	4	5	6	,	6	SUM
PECIPROCATING	25103	5022	68072	50258	141		2014	4530	
₩П₩ Х Сйцинх х	15.53 94,20	5.48	42.10	31.08 96.26	0.09	0.63	1,80	5,89	•
TURBUPROP	26	· · · · · · · · · · · · · · · · · · ·	n0	424	5	1	16	1495	2029
R()# X COLUMN X	1,28 0,10	0.20	0.09	20,90 0,83	0.25 3.18			73,58 12.00	
Turkn::Shak (. 38 ,	224	502	365	1	4	42	31	1207
874 X COLUMN X	3.15 0.14	18,50 3,23	41.59 0.75	30,24 0,71	0.0A 0.64				
10940JE1	. 61 .	11	19	98	4	1	2	1387	1583
POA Z EGLUMN X	\$,45 0,23		1.20 0,03	6,19 0,19					
TURBINE AIR GEN.	. 0	0	0	•	0	0	0	0	
R()n 2 Cillumn 2	U.G 0.0	0.0 0.0	0.0 0.0	Ú.0 0.0	0.0 0.0		0.0	0.0	0.0
Pamjet	: 2	•	0	0	0	0	0	0	2
ROM X Column X	100.00 0.01		0,0 0,0	0.0	0.0	0.0	0.0	0.0	0,00

42

TABLE 8. CONTINUED

GROU	P	1	2	3	4	5	6	7	8	
NO FNG	INF	1399	1069	32	5	6	7	0	1	2519
	RON % Column %	55,54 5,25	42,44 15,43	1.27 0.05			85.0 12.50		0.04 0.01	
NOT REI	PARTED	. 3	0	. 0	0	0	0	0	·····	3
	CUTANN X Bûm X	100.00 0.01	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0,00
TOTALS	•••••	26632	6930	68685	51150	157	56	297B	12442	169030
	80* X	15,76	4.10	40,63	30,26	0.09	0.03	1.76	7,36	•

43/44

GROUP

- 1. No regulatory avionics
- 2. Two-way communications
- 3. Two-way communications YOR or ADF or RNAV

<u>KEY</u>

GROUP

- Two-way communications 4096 code transponder VOR or RNAV
- 5. 4096 code transponder Altitude encoding equipment
- Two-way communications 4096 code transponder Altitude encoding equipment

GROUP

- 7. Two-way communications 4096 code transponder Altitude encoding equipment VOR
- 8. Two-way communications 4096 code transponder Altitude encoding equipment VOR DME or RNAV

		•••••	•••••						•••••	
		• •	: ²	3	. 4	• • 5	. 6	7		50 ⁴⁴
		24751	. 1753			•••••••••• • •••	:	 	 	143175
	Ciris i	17.31 43.05		40.29 10.40	25.1) 78.92	. Ŭ.08 . 59,4\$	0,13 60,07	1.77 85.29	. 2.32 . 20,66	
		. 42A	. 104	, 2504	10645	42	. 11	430	 	22830
	Side X Kina Kena K	1.87 1.01	03 1,9e		. 40.44 . 20.44	6,14 20,75	0.05 19.04	1.6A 14,44	, 38.47 , 71.51	. 13.51
	•	•	· · · · · · · · · · · · · · · · · · ·	······································	•••••	٥			••••••• • •	22
	e a s Briter s F	· 14.14		22.75 0.01		0,0 0,0	0.0 0.0	0.0	40.91	
	• •	. 20		164	120	n	1	A	218	. 456
		4,13 2,04	0.65	22.52 3.10	20.33 6,25	0.2	4.21 1.11	1.65 3.27		
	• • •		. U		a	э.	U	6	v	. o
	i in transformation de la constante transformation	• • 4 • • •	U O	0.0 0.0	3.0 0.5	0.0	0.0 0.0	0.C 0,0	0,6 0,0	. J.O
	•	1110	1 dný	se .	5	• •	7	a	3	
	ы 34 д С. Ц., 49 д С.	53.54 5.25		1.27 9.85	0,20 1,01	0.24 5.42	0.28 12.50	C.0 0.0	0.04 0.01	
	T 1146 S	roosz	6430	h6085	51150	157	56 .	2978	15445	109030
	•	15.70			\$6.20	0.09		1.76	7.36	
GROUP			GROUP	<u></u>		••••••	• • • • • • • • • • •		GROUP	
 No regulat Two-way co Two way co 	mmunications		4		commun: le trans NAV				4 A	wo-way 096 cod ltitude
3. Two-way co VOR or RNA					le trans e encodi	•		•	· V(8. T	OR wo-way
			4	096 cod	communi le trans e encodi	sponder			A. Ve	096 cod ltitude OR } or ME } or

TABLE 9. NUMBER OF ENGINES

45

TABLE 10. NUMBER OF SEATS

	1	2	3	4	5	6	7	8	\$UM
			••••••						• • • • • • •
1 SEAT	6150	1589	817	105	16	6	7	10	570(
RCW X	70,69					0.07			
COLUMN X	. 23.09	22,93	1.19	0,21.	10,19	10.71	0,24	0.08	5,15
2 SEATS	13774	2414	26433	3874	38	8	201	9A	4684
E VICTO								• • • •	
RUH X	. 29.41					0.02			
CULAN X	. 51,72	34.83	38,48	7,57	E4.20	14,24	, 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • • • • • • •	
3 SEATS	3687	1455	3244	185	7	14	21		862
ROM X	• N > 77	16.88	37.63	2.15	0.08	0.16	0.24	0.09	
COLUMN X		21.00							
	2065	1088		30616	48	13	1941	2330	7044
4 SEATS	. 2005	1000	32342	. 3/810	40	• •	/~.	• • • •	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
R04 %	2,93	1,54							
CULINN 2	7,75	. 15,70	47.09	, 59,86 .	30,57	, 23,21 . •	, 65,18 •	. 18,73 . •	41.6
5 SEATS	. 320	. 146	2462	3824	5			654	767
3 35 4 (3			-			•	•	•	•
R-JW 2	4.17			49.82			3.45 8.90		-
COLUMN X	. 1.20	• • • • • •	•	• • • • • • • • •	• • • • • • • • • • •	•	• • • • • • • • • • •	•	
6 SEATS	, 246	52	2223	9471	29	9	. 411	. ¢726	1719
PNW X	. 1.43	• 0.48	12.93	55.07	0.17	0.05	2.39	. 27.4A	•
COLUHN X	0.92			18,52				37.08	

TABI	JE 1	0.	CONTI	NUED
+1101		••	CONT	NULD

GROUP	1	2	3	4	5	6	7	8	
7 - 11 SFATS	. 224	74	649	2395	. 12	• 3	99	• 3491	
RUW X Column X	3.22 0.84								
12 - 19 SEATS	97	62	• • 166	223	• • • • • • • • • • • •	1	12	•••••••••• • 415	• • • 977
RD# % CDLUMN %	9,93 0,36								
20 - 49 SEATS	• • • • • • • • • • • • • • • • • • •					1	····· 15	- - - 483	• • 1099
000 X CULUMN X	3.73 0.15		20.75 0,33	28,57 0,61	0.09 0.64				
0 - UP SFATS	19	4	121	145	0 .	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	227	. 521 .
RUM X Column X	3.65 0.07	0,77 0,06		27.45 0,28	0.0 0.0		1.15		
OT REPORTED	9	0	e	0	٥,	••••••••••••••••••••••••••••••••••••••	••••••	•••••••	9
894 X CQLUMN X		0.0	0.0	0.0	0.a 0.0	0.0 0.0	0.0	0.0	0.01
TALS .	26632	6730	68685	51150	157	56	2978	12442	169030
RDW %	15.76	4.10	40.63	30.26	0.09	0.03	1,76		

GROUP

- 1. No regulatory avionics
- Two-way communications
 Two-way communications VOR or ADF or RNAV
- GROUP
 - Two-way communications 4096 code transponder VOR or RNAV

KEY

- 5. 4096 code transponder Altitude encoding equipment
- Two-way communications 4096 code transponder Altitude encoding equipment

GROUP

 Two-way communications 4096 code transponder Altitude encoding equipment VOR

.

8. Two-way communications 4096 code transponder Altitude encoding equipment VOR DME or RNAV

.....

TABLE 11. PRIMARY USE

	ιι. •	LG	LM	LMG	RNAV	WRAD .	τ.»	1.4	∆LL	× 6	CNT 1
	· · · · · · · · · · · · · · · · · · ·	•••••••	••••							•••••	
FXELUTIVE	. 207 .	51 .	184	. 5432	1471	3050	244	5443 .	1:53.	374 .	5235
₽0% % COLUMN %	3.32 1.10				23,54 13,50	58.19 47.34			18,49, 52,77		
RUSTNESS	1796	160	4907	11752	2571	1930	1559	674	336 .	6249	24634
fin Z COLUMI Z	7,23 9,56			47.31 26.50					1.35 15.58		
PERSINAL	. 6916	280	10023	9128	\$185	815	764	118	59	28864	55506
00m % C(EUMN %	12,20 36,89		17.h9 , 44.33							50,04 30,41	
AFRIAL APPLICATION	. 119	5.	47	. 121	45	51	8	19	2	3273 .	3540
20+ X CN,044 X	3,31	0,61									
	2441	32	858	1839	257	35	66	55	•	3654	R053
₽()+ % Ç(<u>i</u> li)4N %	27.26										
LIR TAXI	. 286	24	 رەق	2900	505	702	200	565	135	871	
90 е % Соцуми %	• 6.43 • 1.53					15,79		12,71		19,59	

TABLE 11. CONTINUED

GROUP	L	LG	LM	LMG	RNAV	WRAD	I,R	I,W	ALL	NG	
TNDESTRIAL ZERECIAL	327	18	145	379	52	35	17	. 25	, h	949	1793
204 X COLUMN X	18,24 1,74	1.00	н.04 0.04	21.14 0.35	2,90 0,48	1.95 0,46	0,95 0,48	1.39	0,33 0,27	50.70 1.15	1,06
AJPERAFT RENTAL 603.											
ี่ 2014 X Cเป_ยพ№ X	19.14 5.42	, 0,66 , , 4,25 ,	14.88 3.49	32.57 3.90	3,35	1,19 0,82	1.45 2.16	0.70	0,49	31.95 2.14	5. 14
otat b	560	• • • •	173		132	550	41	153	65	1346	2531
. ຂ∈. % ີ⊂ຕີ∟ວ∺N %	11.85 1.60	0.55 1.70	0.84 0.77	26.07 1.53	5,22	8,69 2,87	1.62 1.15	6.05 2.86	2.57 2.97	53.18 1.70	1,50
INPUTEOZNOT REPURTED.	5342	5/5	5610	10379	2638	1716	769	1270	<u>194</u>	32040	54600
20 A 2 CUL 12N 2	9,77 28,49	0,47 28,52	10.26 24.61	14,49 23,41	4,83 24,22	3,14 22,38	1.41 21.57	2,32 23,76	0,72 18,03	58.62 40.42	32,34
TOTALS	14750	824	22010	44345	10594	7666	3565	5346	2185	74276	164030
• • • • • • • • • • • • • • • • • • •	11.09	0.49	13.38	26.23	6.45	4.54	2.11	3,16	1,29	46,90	

GROUP L: Localizer

M: Marker beacon

G: Glide slope

R, RNAV: Area navigation system

KEY

GROUP W, WRAD: Weather radar I, LMG: Complete ILS system ALL: I, R, and W NG: Non-grouped aircraft

يم.

×

TABLE 12. BASE AIRPORT REGION

.

.

	• •	, , , , , , , , , , , , , , , , , , , ,			•	•				, ,	
	• L i	LG	, LM ,	LMG .	RNAV	WRAD .	I,R	I I H	ALL	NG	CNT
NEW ENGLAND	726	56	874	1585	311	181	102	124	52	2005	6208
RIH X Column X	11.69 3.87										
EASTERN	2505	97	3762	6175	1444	1214	456	856	538	6945	21823
404 X Column X	11,48 13,36		17.24								
SOUTHERN	2877	142	3059	7471	1902	1690	655	1143	531	10607	24623
2011 X 2011 X	• 11.68 • 15.34		12,42 13,53							43.08 13.38	
GREAT LAKES	. 3730	133	4945	6083	2177	1637	651	1165	446	15061	35003
ROA X COLUMN X	11,44 19,89		15.16 21. ⁸⁶					3.57 21.79		46.20 19.00	
CENTRAL	. 1310	61	1423	2881	790	497	262	324	160	5998	11919
R0* % Crijumn %	. 10.99 . 6,99										
ROCKY MOUNTAINS	. 450	• 42 • 42	, noz	. 1806	• • 535	223	151	150	, 6 5	4750	8085
ROW X Column X	10,94		10.16								

50

.

`.

TABLE 12. CONTINUED .

	L	LG	LM	LMG	RNAV	WRAD	I ,R	I,W	ALL	NG	
NITET HEF STERN	1033	40	1249	2068	470	• 156	149	117	27	5099	96*5
ጽቦ# 2 ርበլክቶም 2	10.67							1.21 2.19	1.24		
	2711	107	3951	7217	1396	554	546	596	147	12179	25648
CULUMN X 60% X	10.23 14.46		14.55 17.03							45.96 15.36	
,50%THWESIGRA	2351	144	2308	n485	1645	1426	553	1006	400	10674	69655
204 X COLUMN X	19.59 12.54		10.31 10.21							47.66	
PACIFIC	50	5	19	вз	16	. 10	• 4	. 6	• 4	217	370
R()= 1 CILIMN 1	13.19										
ALASKAN	452	23	224	375	197	41	33		. 8	2756	3965
C((1)~/* # 5()* #	11.40 2.41	2,79									
EUdē ICN	55	a ,	17		. 11	37	3	30	. 6	5 3.	•
RTIN X COLUMN X	22.27 0.29										
TOTALS	18750	P.20	22610		. 10994	. 7566	. 3565	5344	2145	79276	169030
P/14 2	11.09	0,49		26.23	6,45		2.11	3,16	. 1,29	46.90	•
•••••	•••••				KEY	GROUP	•••••	•••••	•••••		• • • • • • • • •

GROUP L: Localizer

M: Marker beacon

G: Glide slope

R, RNAV: Area navigation system

W, WRAD: Weather radar

I, LMG: Complete ILS system

.

All: I, R, and W

GROUP

NG: Non-grouped aircraft

•

TABLE 13. HOURS FLOWN

			۰۰۰ ت	 LHG	> • • • • • • • • • • • • •	44 P.	а 	· · ·	••• • • •	o z	F 7 3
4 م kie 2010 د د	2519 2519 10,87	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2524 2524 10.89 5.69	1148 1148 1148		210 210 5,84	0, 140 0, 74 0, 14	78 78 3.57	15072 65,01	23183 23183 13,72
50 - 99 RUM CDLIFH X	3004 30.4 32,35	125 125 14.93	4170 17.13	4475 4475 15.38 10.09	1534 6.30 14.08	N 82 61. 1	403 1.66	170 170 5,14	92 92 12 12	11027 49.92 15.24	24362 14,40
בנורוזא א 2014 א 100 - 199	2174 2174 11,87	125 125 14,93	5600 1965	5505 50.05 12.41	1324 7.23 12.15	404 2,21 5,21	518 518 2.83 14.53	276 276 1.51 5.16	113 0.62 5.17		18519 19.84
100 - 109 RUM COLUMN X	1044 10,00 5,57	2 9 5 5 7 5 2 6 7 5 2 6	21 1 4 20 25 9 35	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	826 7,91 7,53		379 379 3.65 10.65	257 257 2,46 4,91	н н н н н н н н н н н н н н	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1070 1070 1070 1070 1070
203 - 249 201 - 249 201 - 249	856 856 9,79 2,57	6 0 6 0 7 1 7 1 7	1537 17,57 6,80	4 2 3 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	799 7,33	6 N 4 6 N 6 6 N 6	287 287 287 287	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	164 164 7.51	2303 26,35 26,35	8747 8747 5 17
250 - 299 PIA C(LUMN A	4,49 2,649 2,65	24 247 291	15.52 149	к с с с 46 - 92 5 - 39		451 451 8,86 5,88	ст ст ст ст ст ст ст ст ст ст ст ст ст с	322 6,33 6,02	ະ ເນີຍ ເນີຍ ເນີຍ ເນີຍ	1350 1350 26.53 1,70	5089 3.01

-

-

TABLE	13.	CONTINUED
-------	-----	-----------

GROUP	L	LC	LM	LMG	RNAV	WRAD	I ,R	I,W	ALL	NG	
370 - 544	23	. 50	. 057	2=37		595	197	. <u>3</u> 46	147	1342	568
en z Culumo z	10.50	0.39 2.43	12.93 2.91	47,97 5.50	4.63 4.49	11.52 7,63					
55° = 399		24	. <u>5</u> 04	. 1554	313	- 486	103	329	155	760	3041
総合所 名 CEUUHN 2	. 16.95 . 1.75			50,34 3,46		15,95 6,34					
400 - 449	397	14	310	1554	291	501	92	341	158	A40	3140
904 X 2010M X	12.64 2.12										
⊻50 - ijP -	2054	58	1124	5029	1054	20A3	293	1475	598	4019	1298;
RDX X Chilomnik	15,54 10,98										
.07 FLOAN	714	42	420	798	341	191	50	135	44	12186	14241
905 - 1 2010-12	. 4.96 . 3.41.									64.75 15.37	
Perteo Hudes	4628	193	5190	9561	2297	1525	719	1135	350	19852	40274
70- % COLUMN %	11,49 24.68	6,48 25,48	12.89 22.95	23,79 21,01		3.79 19,89	1.79 20.17	24.5 21.23		49.29 25.04	
s	18750	624	22610	44345	10894	7668	1565	5346	2185	74270	169031
R04 %	11.04	0,49	13.38	26,23	6.45	4,54	2.11	3,16	1,29	46,90	•

GROUP

GROUP

KEY

W, WRAD: Weather radar

M: Marker beacon

G: Glide slope

L: Localizer

R, RNAV: Area navigation system

I, LMG: Complete ILS system

All: I, R and R

NG: Non-grouped aircraft

TABLE 14. AGE OF AIRCRAFT

.

		• L	LĢ	1.M	LMG	RNAV	WRAD	I,R	Iew	ALL	NG	ENT
0 - 4	YFARS	4239	131	2432	10789	2539	2101	927	1137	950	10424	2824
	RDW X COLUMN X	15.01					7.44 27.41				36.91 13,15	
5 • 10	YFARS	5502	219	6077	15476	3415	2775	1253	2157	581	16512	4669
	RUM X CULUMN X	11.78 29.34			35.15 34.90						35,36 20,83	
1 - 15	YEARS	. 2586	137	5122	7549	1787	750	598	570	150	9095	2506
	POA X Column X	10.32		20,55 22,79								
16 - 20	YEAPS	2187	124	\$663	4425	1383	439	351	330	93	8596	1948
	RO# ¥ CDLUMN ¥	11,22 11,66		18,80 16,20							43.62 10.72	
21 - 25	YEARS	1086	69	1282	1276	453	177	79	157	31	4651	859
	PON X COLUMN X	12,64 5,79										
26 - 30	YEARS	1072	55	1278	887	759	130	61	99	23	18576	2332
	ROA X Culumn X	8,45 10,52									79.63 23.43	

TABLE 14. CONTINUED

GROUP	L	LG	LM	LMG	RNAV	WRAD	I,R	I,W	ALL	NG		•
.31 - 35 YEARS	215	25	85	580	124	217	52	176	35	4917	5884	•
RCW X CRLUHN X	3,65	0,42 3,03		9,86 1,31	2.11 1.14				0.59 1.60	83.57 6.20		, , , ,
OVER 35 YEARS	49	0	19	.	20	18		16	s .	1035	1401	•
REIN X CALUMN X	2,72 0,26			4.66 0.19								4,
NOT REPORTED	914	64	621	3279	717	1059	270	724	. 320	4966	9932	•
ROK X COLUMN X	9.20 4.87			33.01 7.39								• • • •
TITALS	18750	H24	22610	44545	10894	7666	, 3565	5346	2185	79276	169050	•
RUM X	11.09	0,49	13,38	26,25	6.45	4.54	2,11	3,16	1.29	46.90	• • • • • • • • • • • • •	•

5 5

KEY

GROUP L: Localizer	GROUP W, WRAD: Weather radar
M: Marker beacon	I, LMG: Complete ILS system
G: Glide slope	ALL: I, R and W
R, RNAV: Area navigation system	NG: Non-grouped aircraft

.

TABLE 15. COMPUTED AIRCRAFT TYPE

.

	• • • • • • • • • •	•••••	••••••••							••••	
	• L •	נה	L.M.	L MG	HNAV .	WRAD	I#R	Тин	ALL	• • G	. C'.T
TVP <u>F</u> 1	H248	131	2767	1295	1670	34	57	7	5	45301	54005
504 X C01UMN X	13.98 43.99										
TYP4 2	9922	586	18919	21881	5206	145	1829	40	32	26603	79748
R0% % CDLU™N %	12.44 57.92		23,72 83,68		6.53 47.79	0,18 1,89				33,36 35,56	
TABE 3	148	58	831	12350	1920	1536	1329	1038	491	516	1 5 4 3 9
RUN X Colunn X	1,06 0,79				13.77 17.62	11.02 20.04	9,53 37,28				
TYPE 4	Р. 9	Su	45	5085	983	2574	288	1879	685	327	5579
9114 X COLUMN X	1.60 0,47			91.15 11.47	17.62 9,02	45,14 33,58	5.16 8.08	53,68 35,15	12.28		
Labr 2	. 6	1	1	209	39	159	z	122	36	61 j	545
אחא X כחנשיא X	2.14 0.03					56.79 2.07					
typf 6	. 1	1	3.	1360	441	1323	8 ,	890	430	, 18	1383
קטא ז Column ג	0.07				31,89 4,05			64.35 16,65			

56

<u>``</u>.

GROUP	<u>L</u>	LG	LM	LMG	RNAV	WRAD	I.R	1,W	ALL	NG	•••••
T + 216 7	e	¢	۰ .	525	пь	5A+	25	374	61	3	529
5 x ¥ Crucies X	C.(D.0	0.0 0.0		49,24	16,2n 6,79	12.97 5.04					
Tew; -	50	8	4	104	13	60	3	49 J	י:	67	214
9756 - 12 6 123 49 12	13.75			49,77 7,25		27.40 6.70		22.37 0.92			
typ: 9		2	• • •	1366	300	1279		917	\$59	7	1310
39,1⊶ \$2 3 ((mi), %	6.0 5.0							69.08 17,15			
7 7 66 10		C.		157	74	155	. A	78	74	1	
日行み ち ビビレレット ち	0.5	0.0 0.6	0.0 0.0			96.21 2.62	0,0 0,0				
1401 11		ь. -		÷	25		. 0	2	1	5045	,
90% 1 CRLU4% 1	2.25			0.29	0.81 0.23						
TYER 12	. 229	13	32	57	s 64	9	- 24	. n	1	85P	1214
19∉an 12 E+aturi‱12	14,46 1,22					0,74 0,17					
tva: 13	в.		, 3	2	. 13	:	. 0	. 0	a	2540	2500
₽04 % 6⊧μ≎≪4 %	0.51 u.D.		C.12			0,08 0,03			0.0		
TOTALS	1+750	824	22610	44345	10894	7060	3585	5346	21#5	79276	109030
≅in X	11.04	6.49	13.34	26,23	. n.45	4.54	2,11	3,16	1.29	46.90	•

TABLE 15. CONTINUED

57

KEY GROUP W, WRAD: Weather radar I, LMG: Complete ILS system

M: Marker beacon G: Glide slope

GROUP L: Localizer

R, RNAV: Area navigation system

ALL: I, R and W

- NG: Non-grouped aircraft
- NG: Non-grou

TABLE 16. AIRCRAFT TYPE

.

.

.

1

	L	ιG	LH	LMG	RNAV	WRAD	I,₽	I.W	ALL	N G	CNT -
GL TRER	8	0	0	1	7	0	0	0	0	2179	2195
RDW X Chlumn X	0,36 0,04		0.0	0.05			0.0 0,0	0.0	0.0	99.27 2,75	
RALL'IUN	0	U	0	. 0	6	0		· 0 •	0	360	366
ROW 2 Column 2	0.0 0.0	0.0 0.0	0.0	0.0	1.64 0.06	0.0 0.0	C.0 0,0	0.0	0.0	98,35 0,45	
ALIMO/DIKIGIALE	0	0	3	1	0	2	c	0	0	1	5
RDW % C121 UMN %	0.0	0.0	60.00 0.01			40.00 0.03		0,0 0,0	0.0	0,00 20,00	
TIXED WING SINGLE	18200	725	21690	23220	6879	181	1689	48	37	71971	138907
RIIM X Column X	13.10 97.07		15.61 95,93								82,18
IXED WING MULTIPLE	244	82	880	21057	3913	7470	1652	5296	2146	933	23252
R(1W % CDLU4N %	1,05 1,30						7,10 46,34				13,76
INTINCRAFT	298	17	37	65	67	13	24		2	3832	4305
RDX X CCLUMN X	6,92 1,59								0.05		

TABLE 16. CONTINUED

.

.

GROUP	L	LG	LM	LMG	RNAV	WRAD	I,R		ALL	NG	
NOT REPORTED	. 0	0	0	• •	0	0	0	0	0	0	0
RUN X COLUMN X	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0,0 0,0	0.0	0.0
TINTALS	18750	824	22610	:44345	10894	7666	3565		2185		
. R()w %	11.09	0,49	13,38	26,23	6,45	4,54	7,11	3,10	1.29	46.90	•

GROUP L: Localizer	KEY GROUP W, WRAD: Weather radar
M: Marker beacon	I, LMG: Complete ILS system
G: Glide slope	ALL: I, R and W
R, RNAV: Area navigation system	NG: Non-grouped aircraft

TABLE 17. ENGINE TYPE

.

-

.

	••••			: • • • • • • • • • •							
	• L	. L G	• • L.М •	LMG	- PNAV	- ARAD	I,R	• • Ish	• ALL	• • • • • • • • • • • • • • • • • • •	счт
RECIPROCATING	18485	800	22571	40830	. 9844	. 445a	\$505	3088	•••••••• • 1250	75829	. 15165
40m % COLUMN %	11,43 98,58		13,96 99,83	25,25 92,07	• 6,09 • 90,36	2.75 58.10	2,17 98,32	• 1,91 • 57,75	• • • • •	•	•
T(IRHI)PP(IP		2	7	1963	538	1747	34	1262	501	• • • • • • • • • • • • • • • • • • •	, 2020
РПА X Социми X	1.28 0.14					87.99 23.05		05.56 62.26	24,49 22,93		
TURHISHAFT	229	1.5	30	57	64	э. Э	24	0	1	845	120
R(14 % CISLUMN %	18.97 1.22					0.75 0.12					
TURBOJET	5	9	2	1494	436	1436	 ۲	996	433	68.	1543
904 X CDLUMM X	0.32 0.03					90.71 18.73	0.13	62.92 15.63	27.35	4,50 0,00	
TURBINE AIR GEN.	0	0	0	0	0	0		· · · · · · · · · · · · · · · · · · ·		6	
RDH X Crijymn X	0.0 0.0	0.0	0.0	0.U 0.D	0.n 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.9	C.O
RAM.JET	, ņ	• • •	•	••••••••••••••••••••••••••••••••••••••	0		•••••••		••••••••••••••••••••••••••••••••••••••		•••••• 2
RDW X CDLUMN X	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0	100.00	-

TABLE 17. CONTINUED

GROUP	L	LG	LM	LMG	RNAV	WRAD	I,R	I,W	ALL	NG	
NO ENGINE	7	•	0	. 1	12	. 0	•	0	. 0	2499	2519
RD4 X COLUMN X	0,28 0,04	0.0	0.0	0.04			0,0 0,0	0.0	0.0 0.0	94.21 3,15	
NOT REPURTED	0	. 0,	0	. 0	0		. 0	0	• • • •	3	3
ROM X COLUMN X	n.0 0.0	0.n 0.0	0,0 0,0	0.0 0.0	0.0	0.0		0.0			
TOTALS	16750			44345			•	5346	2185	79276	169030
₹0 + %	11.09	0,49	13.38	26,23	6.45	a.54	2.11	3.16	1.29	46.90 . •	

KEY

61/62

GROUP L: Localizer

M: Marker beacon

G: Glide slope

R, RNAV: Area navigation system

GROUP W, WRAD: Weather radar I, LMG: Complete ILS system ALL: I, R and W

NG: Non-grouped aircraft

TABLE 19. NUMBER OF SEATS

	• L	, L.G.		. LMG	RNAV	WRAD	. I₂R	. I,W	. ALL	• • N G	. CN
1 SEAT	222	11	. 18	71	74	. 4	• 4	• 1	• 1	8309	• • • 81
RON X COLUMN X	2.55 1.1d				0,85 0,68	0,05				95,51 10,48	
2 SFATS'	7452	118	2672	1259	1465	. 30	53	. 8	• • • •	34258	• • • • • • • • • • • • • •
RDH X COLUMN X	15,91 39,74					0.06					
3 SFATS	644	12	94	43	164	11	3	7	s	7688	80
R()# X C(LUMN X	7.47 3.43		1.09 0.42						50.0 90,0	89.18 9.70	5,
4 SEATS	9094	499	16625	17444	4403	132	1368	39	25	25114	704
R(14 % COLUMN %	12,91 48,50	Ú.71 60.56	23.60 73.53	24,76 39,34	6.25 40.42	0.19 1.72		0.06 0.73			
5 SFATS	574	68	1400	3756	551	69	311	44	21	1765	•••••
RDA	7,48 3,06	0.89 8.25			7.18 5,06	0.90 0.90	4.05 8.72	0.57 0.82			4.5
6 SEATS	606	84	1734	15314	2328	1742	1498	1154	576	1336	1719
RUA X Cülumn X	3.52	0.49 10.19	10.08 7.67	77.42 30.02	13.54 21.37	10.13 ec./c	8.71 . 46.06	6.71	3.35	7.77	10.1

. 64

TABLE 19. CONTINUED

.

GROUP	L	LG	LM	LMG	RNAV	WRAD	I,R	I,W	ALL	NG	
7 - 11 SFATS		21	55	6513	1439	4152	261	2974	1164	434	6947
RDW X Cilumn X	1,66 . 0,61 .		0.76 0,23	90,87 14,24			3.76 7.32	42.81 55.63			4,11
12 - 19 SEATS	21		6	686	145	460	28	349	107	249	977
אלא גערע אין אין אראין אראין אין אראין אין אראין אין אין אין אין אין אין אין אין אין	2,15	0.31 0.36			14,84	47,08	2.87 0,79				
20 - 49 SEATS	22	• • • • • • • •	4	979	226	650	33	451	193	81	1099
	2,00 0,12	0,73	0.36	89.08 2.21	20,56 2,07	59.14 8.48	3.00 0.93				
Sũ - UP SFATS	0	0	• 4	480		416		319	93	33	521
AUM X COLUMN X	0.0	U.0 0.0	U.77 0.02	92,13 1,08		79,85	1.15 0.17	61,23 5,97	17.85 4,26	6,33 0,04	
NOT REPORTED		0			0		••••••	. 0	. 0	9	• 9
204 % 204 % 201048 %	0.0 0.0	0.0	0.0	0,0	0.0	0.0 0.0			0,0	100.00	0,01
••••••	18750	- 		44345	10894	7666	3565	5346	2185	79276	169030
R0+ X	11.09			26.23		-	2,11	3,16	1,29	46,90	•

GROUP

L: Localizer

M: Marker beacon

G: Glide slope

R, RNAV: Area navigation system

KEY GROUP

W, WRAD: Weather radar I, LMG: Complete ILS system

ALL: I, R and W

NG: Non-grouped aircraft

.• .

TABLE 20. SUBGROUPS OF HIERARCHICAL CAPABILITY GROUPS

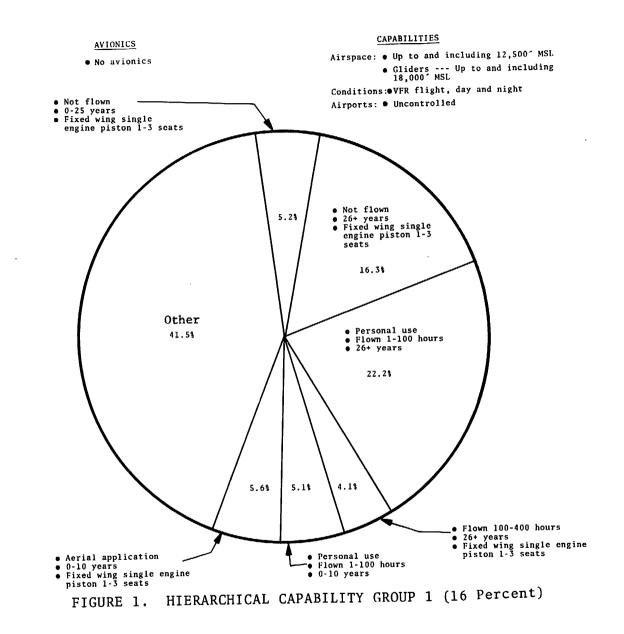
.

•

. r

CHARAC	CTERISTICS								
Primary Use	Hours Flown	Age in Years	Computed Aircraft Type ¹	GF 1	OUPS	3	4	7	8
1.	Not Flown	0-25	1	1278	209		••••••• <u>*</u> •••		
2-	Not Flown	26+	1	5.2% 3982	3.1% 276				
3. Personal	1-100		1	16.3% 5437	4.1% 1010	8251			
4. Personal	100-400		1	22.2%	15.2% 235	12.2%			
5.	100-400	26+	1	1013	3.5%				
6. Personal	100-400			4.1%			9720		1075
7. Personal	1-100		2		180	10310	19.3% 5328		8.8%
8. Personal	1-100	0-10	13		2.7%	15.2% 345	10.6%		
9. Personal	1-100	0-10		1236		5.2%			
lO. Aerial Application		0-10	1	5.1% 1359 5.6%	134 2.1%				
 Personal 	100-400		2			4498			
12.	1-100	11-25	2			6.5%		198	
13. Personal	100-400	0-10	2					6.7% 307	
l4. Business		11-25	2			2786	3192	10.4%	
15.	100-400	0-10	1			4.1% 4429	6.3%		
16.	100-400	0-10	. 13		197	6.5%			
17.	100-400	11-25	2		3.0%			385	
18.	1-100	0-10	2					13.1% 247	
19. Business	100-400	0-10	2				3648	8.4% 285	695
20. Air Taxi		0-10	i i				7.2%	9.7%	5.7% 751
21.		0-10	11		605 9.1%				6.1%
22. Business	100-400	0-10	3		5.14				889
23. Executive	100-400	0-10	14						7.2% 1115
24.	400+	0-10				4262 6.3%	4499	263	9.1%
25. Executive	400 +	0-10	14			0, 3%	8.9%	8.9%	1301
l. Type			Counts Unuseable % in Sub- groups ²	26632 2181 58.5	6930 278 48.0	68685 950 50.9	51150 671 52.3	2978 28 42.8	10.6% 12442 164 47.5

Type


 Fixed wing single engine piston 1-3 seats
 Fixed wing single engine piston 4+ seats
 Fixed wing 2 engine piston 1-6 seats
 Piston Rotorcraft

13 Other 15 Fixed wing 2 engine

rixed wing 2 engine
 % is based on the capability group count minus the number of unuseable aircraft.

TABLE 21. SUBGROUPS OF NON-HIERARCHICAL CAPABILITY GROUPS

CHAI	RACTERISTICS						GROUPS	5				
Primary Use	Hours	Age in Years	Computed Aircraft Type ¹	NG	1	3	4	5	6	7	8	9
1.	Not Flown		1	 7039								
2.	Not Flown		2	9.0% 2193								
3. Personal	l-100	26+	ı	2.8%								
4. Personal	1-100	11-25		9.2%						118		
5. Personal	1-100	11-25	2		1438	2350				3.4%		
6. Personal	1-100		2	7411	7.8%	10.5%	2340	1101				
7.	L-100	0-10	1	9.5% 4100	1037		5.4%	10.2%				
8. Personal	100-400	11-25	2	5.2%	5.6%	2066						
9. Personal	100-400		2	3316		9.2%						
10. Personal		0~10	2	4.2%						330		
 Business 	100-400	11-25	2		1069					3.4%		
12.	100-400	0-10	1	4228	4.8% 1533							
13.	100-400	11-25	2	5.4%	8.3% 1388		3074	837		254		
14.	1-100	0-10	2		7.5% 932	1844	7.0%	7.8%		7.2%		
15.	400+	0-10	1	2450	5.0% 1395	8.2%						
16. Business	100-400	0-10	2	3.1%	7.5%					341		
::7.	100-400	0-10	2		1521	4035	6858	1058		9.7%		
18.	100-400	11-25	3		8.2%	17.9%	15.7% 2082	10.1%		202		
19.	400+	0-10	2		604	790	4.8% 2183			5.7%		
20. Business		0-10	3		3.3%	3.5%	5.0%			352		
21.	100-400	0-10	3				3444	657	588	10.0%	378	209
22.	400+	0-10	3				7.9%	6.1%	7.9% 326		7.3% 221	9.8% 105
23.		0-10	4				2.6% 1994	537	4.4% 1272	115	4.2% 845	4.9% 422
24.		0-10	6				4.6% 1103 2.5%	5.0% 352 3.3%	17.0% 1081	3.3%	16.2% 732	19.8% 347
l. Type			Counts Uruseable % in Sub- Groups ²	79276 906 48.4	18750 213 53.2	22610 128 54.1	2.5% 44345 671 55.5	3-3% 10894 129 47.2	14.5% 7666 192 43.8	3565 44 48.7	14.0% 5346 133 41.7	16.3% 2185 53 50.8
l Fixed 2 Fixed 3 Fixed 4 Fixed	wing single o wing single e wing 2 engine wing 2 engine wing 2 engine	engine pis 2 piston 1 2 piston 1	ston 4+seats l-6 seats 7+ seats	ts								
2. % is based	on the capab	oility gro	oup count mi	nus the s	number of	f unusea	ble airc	raft.				

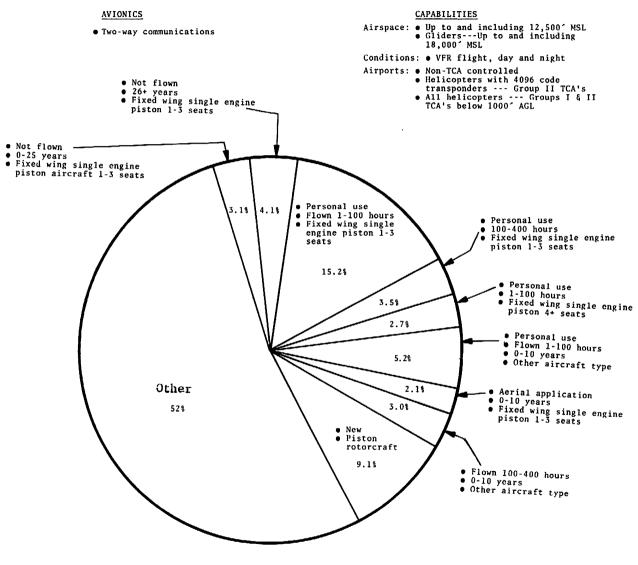
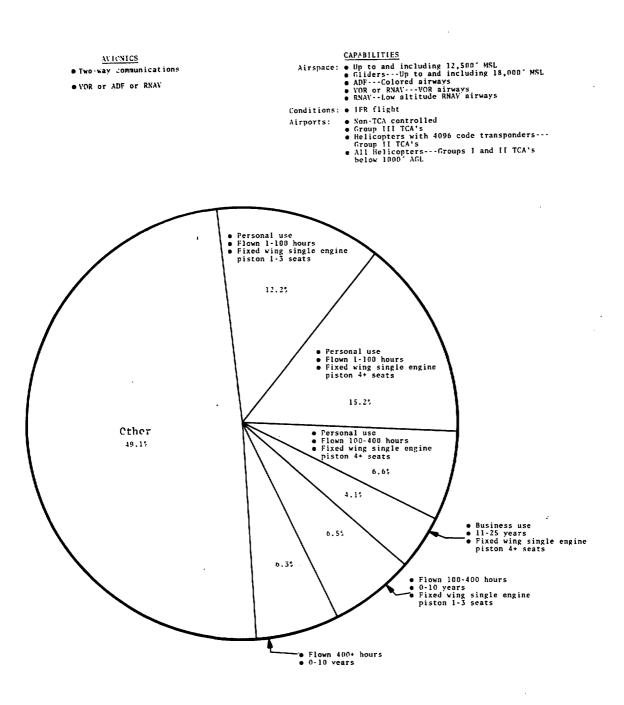
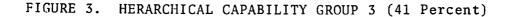




FIGURE 2. HIERARCHICAL CAPABILITY GROUP 2 (4 Percent)

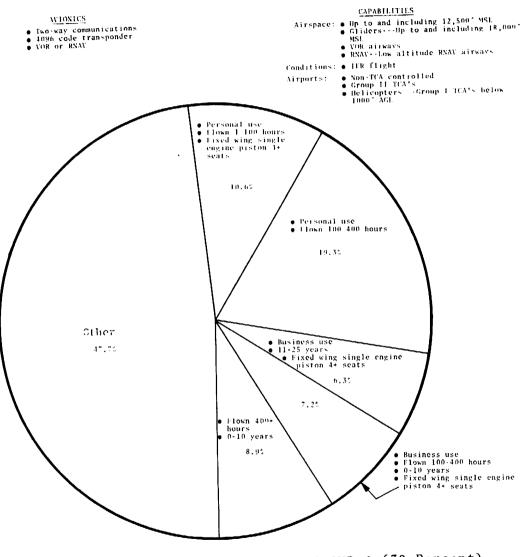


FIGURE 4. HIERARCHICAL CAPABILITY GROUP 4 (30 Percent)

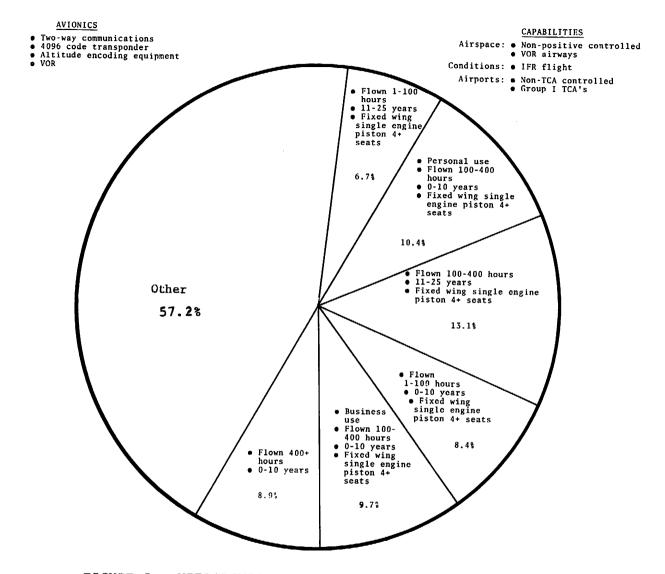
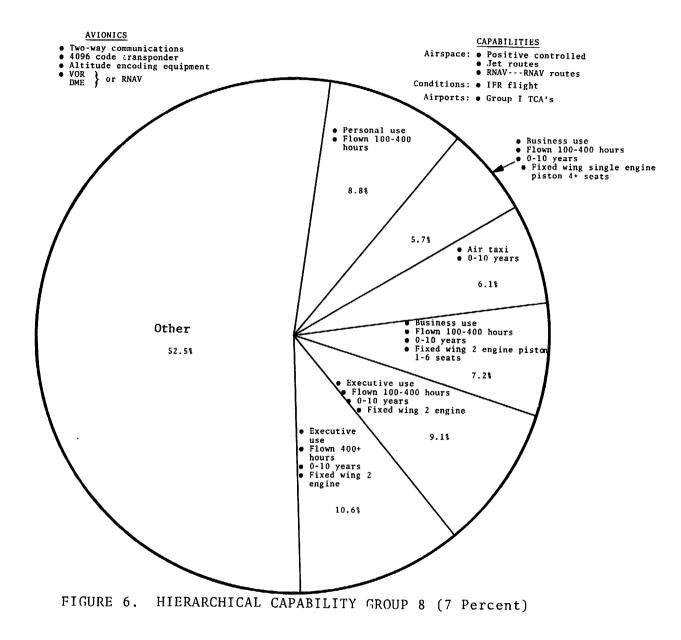
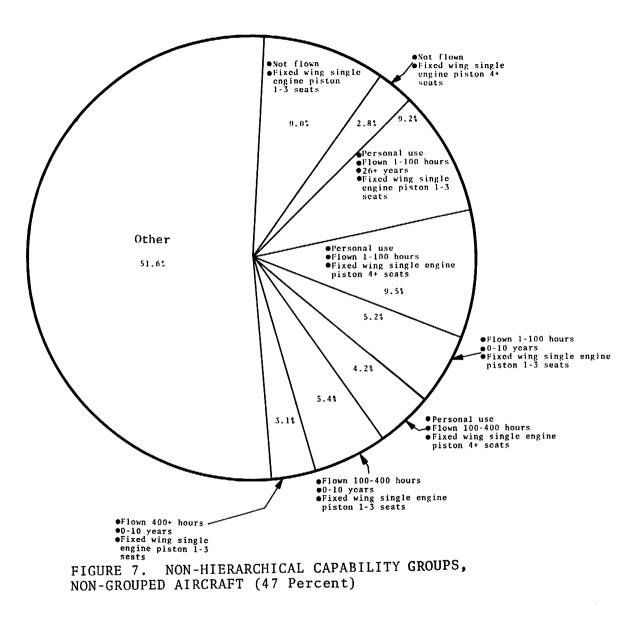




FIGURE 5. HIERARCHICAL CAPABILITY GROUP 7 (2 Percent)

.

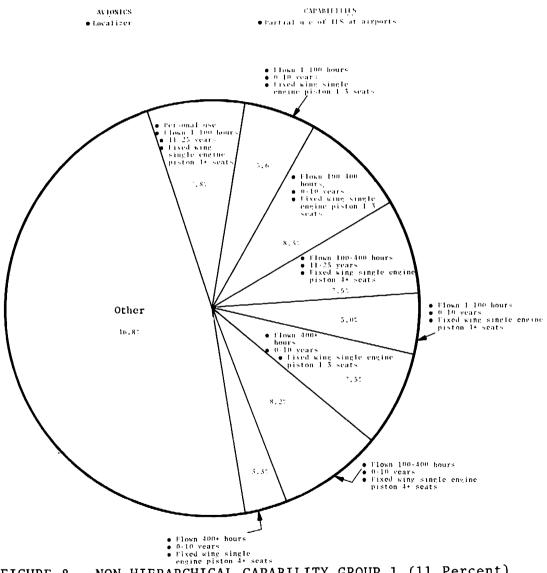
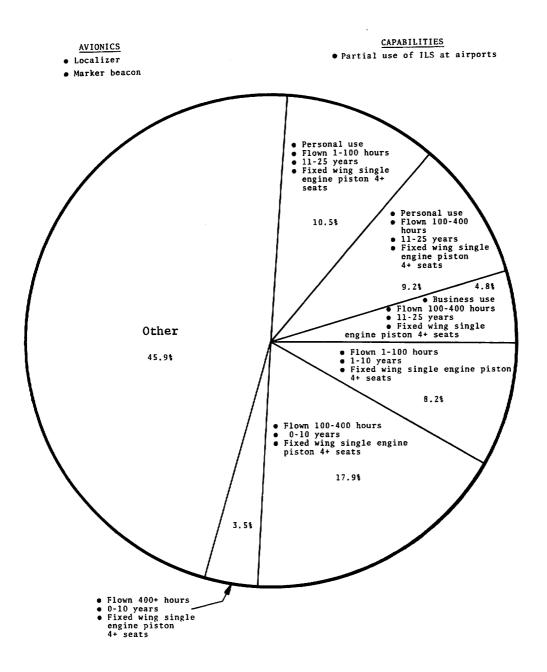
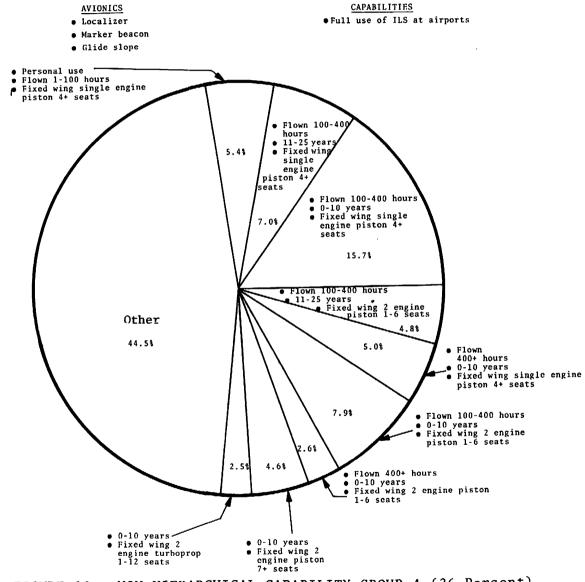
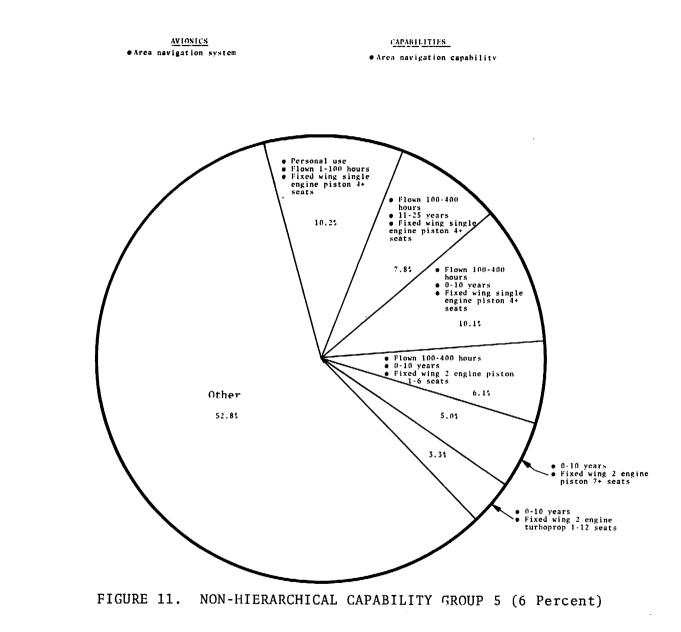
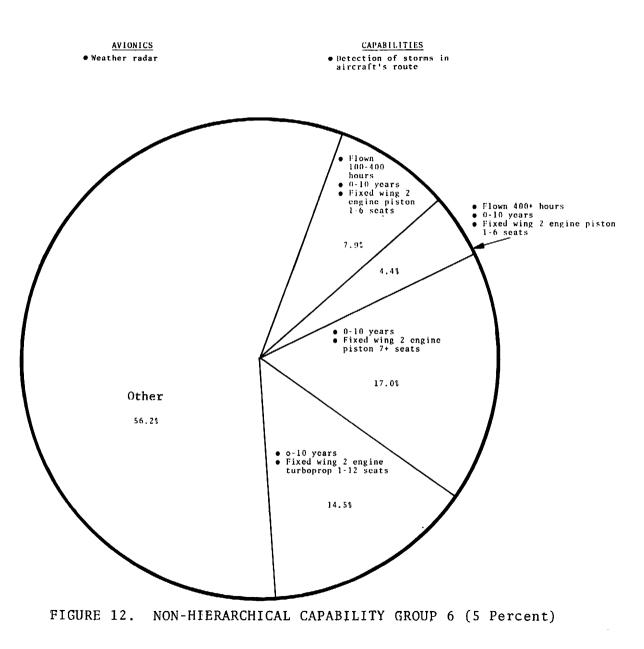
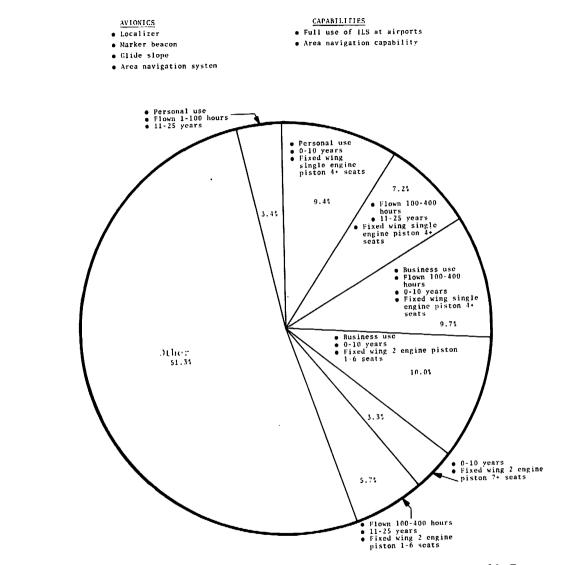
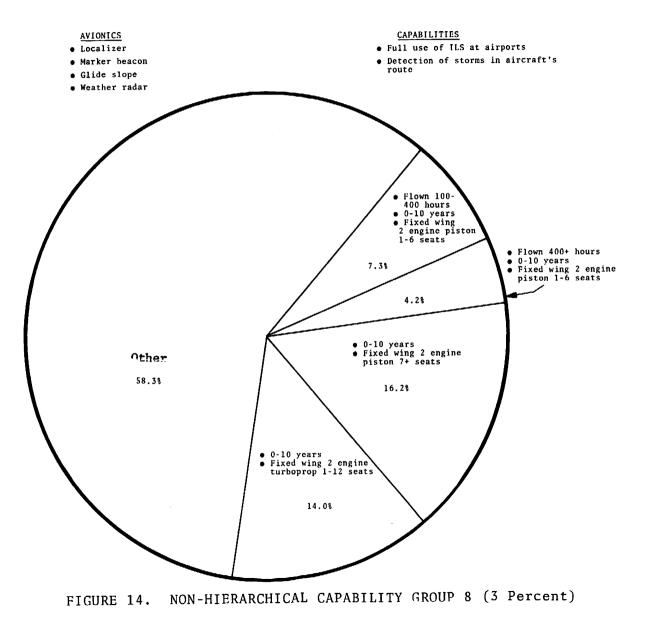
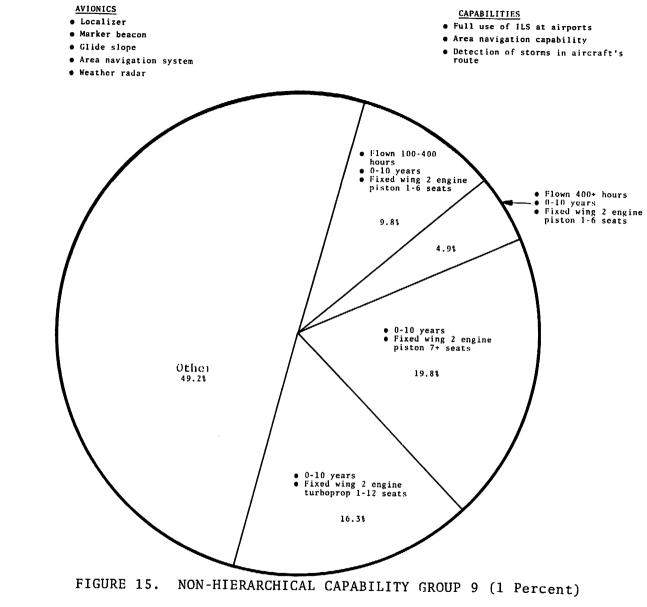



FIGURE 8. NON-HIERARCHICAL CAPABILITY GROUP 1 (11 Percent)


FIGURE 10. NON-HIERARCHICAL CAPABILITY GROUP 4 (26 Percent)



.

¢.

APPENDIX A AIRCRAFT REGISTRATION ELIGIBILITY, IDENTIFICATION, AND ACTIVITY REPORT

••

Please read at the begin and on the	ning d	if each part	ļ	DEPAI	RTMENT OF	TRANSPO	RTATION -	FEDERAL	AVIATION	ADMIN	VISTRATIO	N			ROVED 4-R0185
tore complet	ting th	ia torm.		_		AS (OF DECEM	BER 31, 1	973			where the	and of the		
PART 1	- RE	GISTRA	TION 1	NFORM	ATION	FAR 47.44 rorm by Ap	requires each i mi 1, 1974							0	
Carrect		REG. NO.			SERIAL NU	MBER	3 AIRCF	RAFT MA	NUFACT	URER,	MODEL.	AND SERI	ES		
eny pre-															
printed dataN	N O	0	6	0			6	1	9						
here. 🖓		-	-	-									ddress (il need		
		NAN	E AND	ADDRES	S OF CERT	IFICATE I	HOLDER(S)	•			JMBER AN		, P.O. BOX, 1		·
										CI CI	TY				
										l G	TATE			8 ²¹	
										G C	ANCELLAT	ION OF RE	GISTRATION	REQU	ESTED.
										170.		(Shaw purcha Idrees in remi	asris 170 arka.) 170		TOLEN/LOST
										175 C	DESTR	OYED/SCR			THER
												(Give detail			
										<u>ا ""</u> ا					
REGIS	TRAT	TION ELIGI	BILITY.		e) certily that			20 04	TE	1					
	tizen(s ir) kno); (2) / (we) c wiedge it is /	not regist	urcraft ider ered unde	ntified ebove; ir the lews of i	enu (3) to eny toreign	country.			I (WE		ST CANCE		OF REC	SISTRATION
		-	-									VE REAS	UN.		
SIGNA	TURE	<u>×</u>						- 07	structions reverse		ATURE X				
TIT								FAA 01 51	torm. equests ea	(19) T	to submit th	e In <u>form</u> atio	n Indicated bei	ow. For a	ur cartier aircrat
					INFORM		-	aperenng u	nder FAR 1	27 01 127	ODEL GF		nd fill in Block		
BASE (Corne	AIRF	ORT OF A	RCRAF			T BASED	ALANY		ING MPG	an. a M				ľ	ອ
0	ORTN	LAME				Go ZIP		32 com	nct here.		FAA FOR	M 8130-6	, APPLICA-		<u>p</u>
						189 ²¹		[- ΤΙΟ	N FOR A	CHANC	GENNESS	, MUSIBI	E ON FILE		
D COU	NTY			¢	B STATE	29									
AVIO	NICS	EQUIPME	NT CAP	ABILITY	(Check all box	nea that rolled	st this aircrett's	currenti cau	an brilly.}						
			NINDALEN	т	ns	RECEPTIO	N CAPABILI	TY		N		N EQUIPMI	ENT		
VHF Re	ceiver	CATIONS EC		<u></u>		ocalizer				60	VOR Reco				
100		nis or less				Glide slope				₫Ū	More th	an one			🕄 🗆
181		ets or more.				larkar bea				፼□					6 –
Nos	VHF R	eceiver Capa	bility				eption Capal			•	-		g Equipment		®L
VHF Tr		ter Capabilit	y				R EQUIPME	NT		0 П		tic Direction r Reder	n Finder (AD	r)	6
20 c		la or less				54 coda 6098 code.				Ğΰ	Anarov	od Area Na	vigation Equ	ipment	
27 1		0 channels., re channels,	•••		ă E	iuso coas. Altitude rep				<u>م</u>	Advi	isory Circul	lar 90-45		~ -
No		ne chumiele. Tensmitter Ci			- X H '		onder Equips			49 🗖		igation Equ			<u> </u>
					PERATOR	F NOT O	WNER						T JAN. 1 -		#.)
	RENT	LESSEE/						the second second		***		olessional p			Hr
	RATOP	IS NAME						_				iness reaso		() ()	Hr
STRE	ET A	DAESS										rsonal reas a, health, lo		<u> </u>	Hr Hr
an				I	STATE	69 ²¹	P				proficienc			-	Hr
					9								er services)	Ø	Hr
0												ay, photo.		60	Hr
									AFT RENT					<u> </u>	H
0												rt parachuti		<u></u>	Hi
								LAST Y	EAR. SHO	ow pre	VIOUS OF	ESS THAN	12 MONTHS URS E		<u> </u>
			•				·	F	AIRCEAFT	NOT FL	own last	YEAR, CH	eck here –	-@	→ ∐

After completion & signature mail the original copy to: Department of Transportation, FAA Aircraft Hepistry, AAC-259, P.O. Box 26045, Oklahoma City, Okla. 73126

APPENDIX A. CONTINUED

NOTE: Entries made on the original will appear on the second copy without using carbon paper. The second copy of this form is for the aircraft owner. Shaded areas are for FAA use only.

INSTRUCTIONS FOR COMPLETING AND SIGNING THE FORM ON THE REVERSE.

For your convenience this form has been preprinted with all available information in FAA records as of December 31, 1973. Where the preprinted information is correct, no entry is needed. Where the information is incorrect or out-of-date insert the correct information in the space provided. Where no information is preprinted please enter the information requested in the space provided.

GUIDELINES FOR COMPLETING SIGNATURE BLOCKS 17 AND 18.

- 1. If this aircraft is still eligible for registration, and you wish to continue its registration, sign Block 18 and enter the date in Block 20. Follow the guidelines for signsture below.
- 2. If the aircraft is now ineligible for registration in your name or you wish to cancel its registration for other reasons, complete and sign Block 17 and enter the date in Block 20, following the guidelines for signature below.

. .

GUIDELINES FOR[®]SIGNATURE

- 1. INDIVIDUAL_OWNER. An individual owner whose name appears in Block 12 must sign his name.
- 2. PARTNERSHIP. Any general partner may sign for the partnership but must show his title "partner."
- 3. <u>CORPORATIONS</u>. Any corporate officer or person holding a managerial position with the corporation may sign for the corporation. He must also indicate the title of his office below his signature.
- 4. <u>CO-OWNER.</u> Unless cancellation of registration is requested, any co-owner may sign certifying citizenship and ownership for all co-owners. If cancellation is requested, the signature of each co-owner must appear on this form or on an attached sheet.
- 5. GOVERNMENT. Any authorized person may sign showing his title.

After you complete and sign the form send the original (first copy) to:

DEPARTMENT OF TRANSPORTATION FAA AIRCRAFT REGISTRY AAC-259 P.O. BOX 26045 OKLAHOMA CITY, OKLAHOMA 73126

THIS IS AN ANNUAL REPORTING FORM ONLY AND IS NOT TO BE SUBMITTED WITH OTHER AIRCRAFT REGISTRATION DOCUMENTS OR MONEY.

Da El	ta ement	Field Description	Position	Length	Comments
1.	N-Number	A/N	1-5	5	Left adjusted.
2.	Serial Number	A/N	6–20	15	Right adjusted.
3.	Aircraft Manufacturer Model	N N	21-23 24-25	3 Type 2 Codes 2 1	<pre>1 - Glider 2 - Balloon 3 - Blimp/Dirigible 4 - Fixed Wing Single 5 - Fixed Wing Multi Engine 6 - Rotorcraft</pre>
	Series Type	A/N N	26-27 28	2 1	5 - Fixed Wing Multi Engine 6 - Rotorcraft
4. 85	Engine Type Manufacturer Model	N N N	29 30-32 33-34	1 Type 3 Codes 2	1 - Reciprocating 2 - Turbopropeller 3 - Turboshaft 4 - Turbojet 5 - Turbine Air Generator 6 - Ram Jet 9 - Unknown
5.	Engine Horse Power (each)	N	35-39	5	Lbs. of thrust for turbo only.
6.	Number of Engines	N	40-41	2	•
7.	Number of Seats	- N	42-44	3	
8.	Weight	N	45-51	7	Maximum gross takeoff
9.	Cruise Speed	N	52-55	4	75% of average cruising speed X hours flown = miles flown
10.	Wing Code	A/N	56	1	l - Low Wing 2 - High Wing 3 - Biwing

	Data Eleme	ent	Field Description	Position	Length	Commental
	11.	Aircraft Category Code	N	57	1	1 - Land 2 - Sea 3 - Amphibian
	12.	Amateur Certification Code	e A/N	58	1	Blank - Not Amateur 1 - Amateur Certification
		Fuel Consumed	N	59-64	6	Fuel consumed per engine. Gallons of fuel consumed per hour, recorded in 2 decimal positions, decimal assumed.
86	14.	Airworthiness Class	N	65	1	l - Standard 2 - Limited 3 - Restricted 4 - Experimental 5 - Provisional 6 - Multiple 8 - Special Flight Permit
	15.	Approved Operations Code	A/N	66	1	See Enclosure 1
	16.	Year Manufactured	N	67-68	2	ØØ if Unknown

APPENDIX B. CONTINUED

•

Da E1	ta ement	Field Description	Position	Leigth	Competities
17.	G/A Indicator	A/N	69	1	 Air Carrier Aircraft Type Unknown Air Carrier Aircraft Type Passenger Air Carrier Aircraft Type Passenger/Cargo Air Carrier Aircraft Type Cargo General Aviation Aircraft Dealer Aircraft General Aviation Aircraft continuous maintenance
18. 8 7	Type of Registrant	A/N	70	1	 Individual Partnership Corporation Coownership Government
19.	Base Airport ID	A/N	71-75	5	
20.	Base Airport		,		
	Region State GADO County Site	A/N N A N A/N	76 77-78 79-81 82-84 85-93	1 2 3 3 9	

.

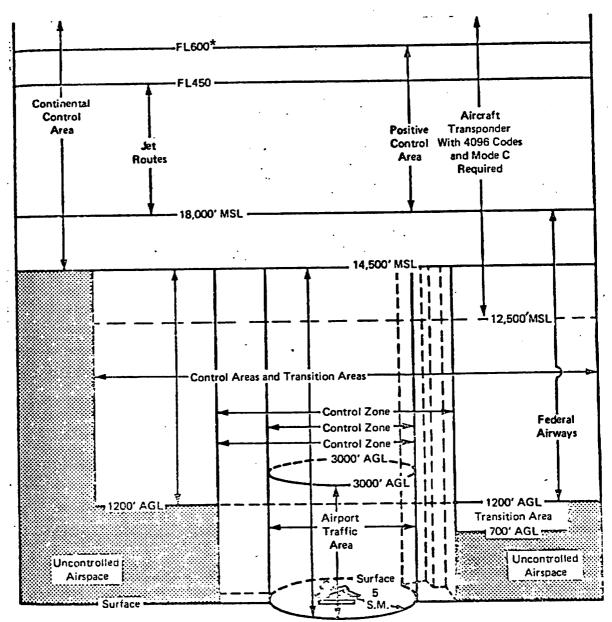
APPENDIX B.

Da <u>E1</u>	ta ement	Field Description	Position	Length	Comments
21.	Owner				
	Zip Region State GA Distr. Office County	A/N N N A N	94-98 99 100-101 102-104 105-107	5 1 2 3 3	•
22.	Operator			-	
88	Zip Region State GADO County	A/N N N A N	108-112 113 114-115 116-118 119-121	5 1 2 3 3	
23.	Hours Flown by Use				
	Executive Business Personal Aerial Application Instructional Air Taxi Industrial/Special Rental Other Previous Owner	A/N A/N A/N A/N A/N A/N A/N A/N A/N	122-125 126-129 130-133 134-137 138-141 142-145 146-149 150-153 154-157 158-161	4 4 4 4 4 4 4 4 4 4	Distribution of previous owner's hours included in other 9 use categories
24.	Not Flown	Α	162	1	1 - Inactive

blank - Active

ţ

Dat E1	ta ement	Field Description	Position	Length	Corments
25.	Primary Use	N	163	1	<pre>Ø - Unknown or Not Reported 1 - Executive 2 - Business 3 - Personal 4 - Aerial Application 5 - Instruction 6 - Air Taxi 7 - Industrial/Special 8 - Aircraft Rental Business 9 - Other</pre>
26.	Communication Equipment				
68	VHF Tuner VHF Receiver	N N	164 165	. 1 1	Blank - Not Reported, 1 - Yes, O-None Blank - Not Reported, O-None 1 - 180 channels or less 2 - 181 channels or more
	VHF Transmitter	N	165	1	Blank - Not Reported 1 - 20 channels or less 2 - 21 through 180 channels 3 - 181 channels or more 0 - none
27.	ILS				
	Localizer Glide Slope Marker Beacon	N N N	167 168 169	1 B1a	nk - Not Reported, 1 -Yes, O-None nk - Not Reported, 1 -Yes, O-None nk - Not Reported, 1 -Yes, O-None


	ita .ement	Field Description	Postrion	Length	Neomal. (1) (1)	
28.	Transponder					
	64 or 4096 code	N	170	1	Blank -Not Reported, O-None 1 - 64 codes 2 - 4096 codes	
	Altitude Reporting	N	171	1	Blank ~ Not Reported, 1 - Yes, 0 - None	
29.	Navigational Equipment				0 - None	Arr
	VOR	N	172	1	Blank - Not Reported, O-None 1 - One 2 - More than One	
	DME	N	173	1	Blank - Not Reported, 1 - Yes, 0 - None	α
06	ADF	N	174	1	Blank - Not Reported, 1 - Yes, 0 - None Blank - Not Reported, 1 - Yes, 0 - None	•
	Weather Radar	N	175	1	Blank - Not Reported, 1 - Yes, 0 - None Blank - Not Reported, 1 - Yes, 0-None	
	Area Navigation	N	176	1	Blank - Not Reported, 1 - Yes, 0 - None	g
30.	Certification Issue Date					
	Month	N	177–178	2		Č
	Day	N	179-180	2		Ë
	Year	N	181-182	2		
31.	Date Entered System					
	Month	N	183-184	2		
	Day	N	185-186	2		
	Year	N	187-188	2		
32.	Statistical Year	N	189-190	2	· · ·	

B-7

APPENDIX B. CONTINUED

33.Imputed Hours A/N 1911 $1 - Yes(Imputed)$ $\beta - No(Reported)$ 34.Imputed Airport A/N 1921 $1 - Yes(Imputed)$ $\beta - No(Reported)$ 35.Type Aircraft Sort A/N 193-1953Enclosure 236.Aircraft Manufacturer Náme A/N 196-2253037.Aircraft Model & Series Name A/N 226-2452038.Engine Manufacturer Name A/N 226-2681340.Airport State Name A 269-2831541.Airport County Name A 284-3052242.Airport Name A 306-3353043.Blank A 337-342644.Random Number A/N 344146.Total Recalcitrant N 344147.Blank A 345-35410		ata lement	Field Description	Position	Length	Comments
35.Type Aircraft SortA/N193-1953Enclosure 236.Aircraft Manufacturer NámeA/N196-2253037.Aircraft Model & Series NameA/N226-2452038.Engine Manufacturer NameA/N246-2551039.Engine Model NameA/N256-2681340.Airport State NameA269-2831541.Airport County NameA284-3052242.Airport NameA336143.BlankA336144.Random NumberA/N337-342645.Engine Sort CodeN343146.Total RecalcitrantN3441	33.	Imputed Hours	A/N	191	1	
35. Type Aircraft SortA/N193-1953Enclosure 236. Aircraft Manufacturer NámeA/N196-2253037. Aircraft Model & Series NameA/N226-2452038. Engine Manufacturer NameA/N246-2551039. Engine Model NameA/N256-2681340. Airport State NameA269-2831541. Airport County NameA284-3052242. Airport NameA306-3353043. BlankA336144. Random NumberA/N337-342645. Engine Sort CodeN343146. Total RecalcitrantN3441	34.	Imputed Airport	A/N 🤤	192	1	
37.Aircraft Model & Series NameA/N $226-245$ 20 38.Engine Manufacturer NameA/N $246-255$ 10 39.Engine Model NameA/N $256-268$ 13 40.Airport State NameA $269-283$ 15 41.Airport County NameA $284-305$ 22 42.Airport NameA $306-335$ 30 43.BlankA 336 1 44.Random NumberA/N $337-342$ 6 45.Engine Sort CodeN 343 1 46.Total RecalcitrantN 344 1	35.	Type Aircraft Sort	A/N	193-195	3 `	Enclosure 2
38. Engine Manufacturer NameA/N246-2551039. Engine Model NameA/N256-2681340. Airport State NameA269-2831541. Airport County NameA284-3052242. Airport NameA306-3353043. BlankA336144. Random NumberA/N337-342645. Engine Sort CodeN343146. Total RecalcitrantN3441	36.	Aircraft Manufacturer Náme	A/N	196-225	30	
SolutionMark39.Engine Model NameA/N40.Airport State NameA269-2831541.Airport County NameA284-3052242.Airport NameA306-3353043.BlankA44.Random NumberA/N45.Engine Sort CodeN343146.Total RecalcitrantN3441	37.	Aircraft Model & Series Nam	e A/N	226-245	20	
No <td></td> <td>Engine Manufacturer Name</td> <td>A/N</td> <td>246-255</td> <td>10</td> <td></td>		Engine Manufacturer Name	A/N	246-255	10	
40. Airport State NameA269-2831541. Airport County NameA284-3052242. Airport NameA306-3353043. BlankA336144. Random NumberA/N337-342645. Engine Sort CodeN343146. Total RecalcitrantN3441	¹ / ₉ 39.	Engine Model Name	A/N	256-268	13	
42. Airport NameA306-3353043. BlankA336144. Random NumberA/N337-342645. Engine Sort CodeN343146. Total RecalcitrantN3441		Airport State Name	A	269-283	15	
42. Airport NameA500-5555043. BlankA336144. Random NumberA/N337-342645. Engine Sort CodeN343146. Total RecalcitrantN3441	41.	Airport County Name	A	284-305	22	
43. BlankII44. Random NumberA/N43. Engine Sort CodeN45. Engine Sort CodeN46. Total RecalcitrantN3441	42.	Airport Name	Α	306-335	30 `	
45. Engine Sort CodeN343146. Total RecalcitrantN3441	43.	Blank	A	336	1	
45. Englist bolt code 1 46. Total Recalcitrant N 344 1	44.	Random Number	A/N	337-342	6	
	45.	Engine Sort Code	N	343	1	
47. Blank A 345-354 10	46.	Total Recalcitrant	N	344	1	
	47.	Blank	Α	345-354	10	

B-6

General Dimensions of Control Zones, Airport Traffic Areas, and the Vertical Extent of Airspace Segments

* FL600 means "Flight Level 60,000 feet MSL"

Airman's Information Manual, Basic Flight Manual and ATC Procedures, Part 1, (May, 1976), p. 1-23.

.

APPENDIX C. CONTINUED

•			Future	system
		Present		
• • • • • •	• • • •	system	In plan	• Total
Designation	Measure	1975	1976-85	1985
En route:				
Jet routes	Number	216	- 66	15
Jet area navigation routes		163	+47	20
Low altitude routes:		103	744	20
Low frequency	Number	24	-24	
VHF/UHF		462	-214	24
Area navigation VHF		402		240
Area positive control		. •	+192	200
Area positive control	(FL)			
Conterminous U.S.		100 000		100 00
		180-600		180-60
Alaska Parallel		240-600		240-60
		0	+ 500	. 500
Three dimensional	Number	0	+1000	100
Ferminal:				
Control zones		806	+287	109
Transition areas	Number	1,495	-9	1486
Control area extension	Number	1		1
Terminal control areas (Group I & II)		18	3	2
STARs/SIDs	Number	414	- 239	17
RNAV STARs/SIDs	Number	2	+448	43
Special use:				
Probibited areas	Number	7	+2	•
	Square		•	
•	Miles	1,626		
Restricted areas	Square	-,		
	Miles	77,639		
Joint use		163	+6	16
Nonjoint usc		29	-18	1
Warning areas		68	-33	3
	Square	00	- 00	
	Miles	408,970		_
Alert areas		408,970	-5	
Jet training areas		35 35	•	-
aca morning greas		35	-5	3
•	Square	07 100		
	Miles	87,183		

Summary of Major Airspace Designated Areas

The National Aviation System Plan Fiscal Years 1976-1985, (March, 1975), p. 6-3.

		Equipment Requirements	
Types of Airspace	Flight condition	1975	1985
	VFR (day)	1. Airspeed indicator7. Manifold pressure2. Altimeter8. Fuel gage3. Compass9. Landing gear4. Tachometer10. Belts5. Oil temperature11. Special equipment f6. Emergency locator transmitter 1(FAR 91.33)	Same as 1975 or
Uncontrolled	VFR (night)	All above plus:1. Position lights2. Anti-collision light4. Electrical source	Same as 1975 hire)
Uncontrolled	IFR	Same as VFR plus:1. Two-way radio6. Artificial horizon2. Navigation system7. Directional gyro or3. Gyro turn/bankequivalent4. Sensitive altimeter adjustable for barometric8. Generatorpressure5. Clock with sweep secondhand	• Same as 1975
Controlled (non- positive)	VFR IFR	Same as uncontrolled VFR plus transponder ² Same as uncontrolled IFR plus transponder ²	Same as 1975 Same as 1975
Positive control	VFR IFR	Requires prior ATC approval Same as uncontrolled IFR plus: 1. DME (if YOR/TACAN equipment/carried) 2. Transponder ¹ 3. VOR (In TCA's) 4. ADF (Air Carrier only) 5. ILS (Air Carrier only)	Same as 1975 Same as 1975

¹ Does not apply to turbojet aircraft, scheduled air carriers (except charter), or certain training and agricultural flights.

* 4096 code, Mode 3A transponder with Mode C automatic altitude reporting capability will be required at Group I and II TCA Locations and in APC, and in controlled airspace of the 48 States above 12,500 feet. All non-participating aircraft operating within Group III TCA's will be transponder equipped with Mode C capability.

۰.

The National Aviation System Plan Fiscal Years 1976-1985, (March, 1975), p. 13-5.

APPENDIX C. CONTINUED

•

	Terminal airspace							
Location	designation	Present	Under Consideration	 Services provided 				
Top 9 Large Hub locations.	Group I TCA	(Effective Jan 1. 1975) 4096 Code Transponder and Mode C Automatic Altitude Reporting Ca- pability; Two-way Radio; VOR or TACAN Receiver.	Relaxation of Transponder Requirements During Periods of Low Activity.	TCA Procedure				
Neπt 12 Large IIub locations	Group II TCA	(Effective July 1, 1975) 4096 Code Transponder and Mode C Automatic Altitude Reporting Ca- pability; Two-way Radio; VOR or TACAN Receiver.	Deletion of Altitude Encoding Requirement. (Has been Deleted)	TCA Procedures				
Remaining 42 ARTS-III locations.	Group III TCA	(Effective July 1, 1975) 4096 Code Transponder and Mode C Automatic Altitude Reporting Ca- pability or Two-way Radio Communications.		TCA Procedures				
All other radar facilities	TRSA where Stage III service is provided	· · · · · · · · · · · · · · · · · · ·		Stage II or III service				

BT-41--1 77

- --

.

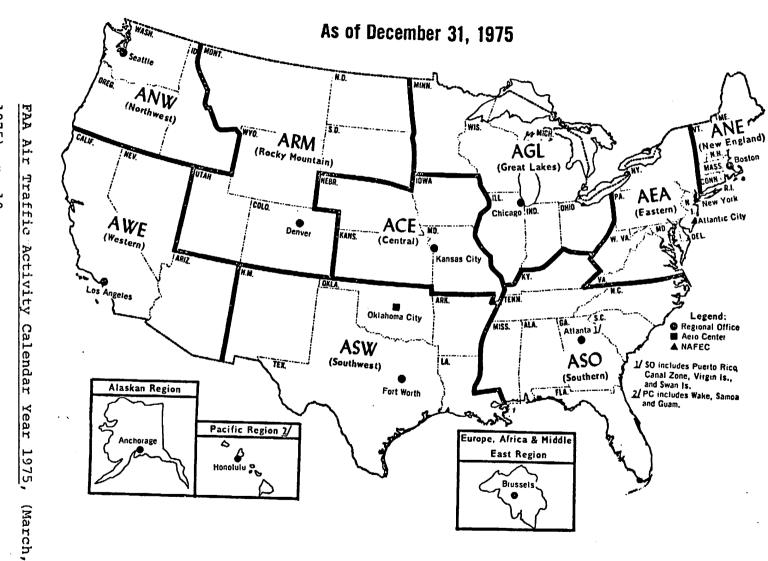
The National Aviation System Plan Fiscal Years 1976-1985, (March, 1975), p. 6-4.

	GR OUP I	Date	designated or planned		GROUP II	Date designated or planne
3	Atlanta	June	1970	1.	St. Louis	Jan. 1974
	Chicago			Ż.	Seattle	Jan. 1974
	Washington National			3.	Minneapolis	Feb. 1974
	New York					
	(LGA, JFK, EWR)	Sept.	1971	4.	Denver	Mar. 1974
	Los Angeles	-		5.	Houston	Mar. 1974
	San Francisco			6.	Cieveland	May 1974
	Boston			7.	Detroit	May 1974
	Miami			8.	Pittsburgh	May 1974
	Dallas			9.	Las Vegas	Nov. 1974
				10.	Philadelphia	Mar. 1975
			· · ·	11.	Kansas City	Mar. 1975
				12:	New Orleans	Jul. 1975

Designated Terminal Airspace (All ARTS-III Locations); Terminal Control Areas

Group III Terminal Areas (42 locations)

Albany	
Albuquerque	
Baltimore	
Birmingham	
Buffalo	
Burbank	
Charlotte	
Cincinnati	
Columbus, Ohio	
Dayton	
Des Moines	•


El Paso Hartford Honolulu Indianapolis Jacksonville Louisville Memphis Milwaukee Nashville Norfolk Oklahoma City

Omaho Orlando Portland, Oreg. Phoenix Providence Raleigh-Durham Ontavio, California Rochester, N.Y. Sacramento Salt Lake City San Antonio

San Diego San Juan Santa Ana/Long Beach Shreveport Syracuse Tampa Tucson Tulsa Washington-Dulles

. .

The National Aviation System Plan Fiscal Years 1976-1985, (March, 1975), p. 6-5.

1975), p. 10.

99/100

APPENDIX D. FEDERAL AVIATION ADMINISTRATION REGIONS AND REGIONAL OFFICES

APPENDIX E. COMPUTED AIRCRAFT TYPES

DESCRIPTION

TYPE

1.

2. Fixed wing single engine piston 4+ seats 3. Fixed wing two engine piston 1-6 seats 4. Fixed wing two engine piston 7+ seats 5. Fixed wing other 6. Fixed wing two engine turboprop 1-12 seats 7. Fixed wing two engine turboprop 13+ seats 8. Fixed wing turboprop other 9. Fixed wing two engine turbojet

Fixed wing single engine piston 1-3 seats

- 10. Fixed wing turbojet other
- 11. Rotorcraft piston
- 12. Rotorcraft turbine
- 13. Other aircraft

101/102

APPENDIX F. SAMPLING AND CONTINGENCY TABLE METHODOLOGY

Because of the large number of GA aircraft (169,030) assigned to CG's, it would have been cumbersome to use all of them in the CG analysis. Consequently, a contingency table analysis was performed on a sample of aircraft to identify homogeneous subgroups of aircraft within each CG. The results of the analysis were then applied to all 169,030 aircraft with the results appearing in Tables 20 and 21 and Figures 1 through 15. Sampling and contingency table analysis are discussed thoroughly below.

<u>Sampling</u>

The sampling criterion used was a desired standard error of 0.25 percent when estimating proportions with 95 percent confidence. This criterion yielded a sample size of 1537 aircraft for each hierarchical group when uncorrected for finite population. In the interest of conservation 1537 aircraft were drawn from each hierarchical CG regardless of its size. The calculations used for determining sample size are shown in the box below.

The sampled aircraft were then regrouped by non-hierarchical CG's to obtain samples for the non-hierarchical analysis. A better method would have been to sample 1537 aircraft from each of the original non-hierarchical CG's, but this was constrained by the design of the computerized data base in hierarchical group order. Nonetheless, a precision of 0.05 percent or less was achieved using the regrouped samples with only two exceptions at 0.06 percent.

Contingency Tables

Large groups of homogeneous aircraft within CG's were discovered through contingency table analysis. Contingency tables are simply a means for displaying large amounts of categorical data. In this case, each GA aircraft can be described in terms of the nine characteristics, or factors, discussed in the previous within an airport traffic area except for the purpose of landing at, or taking off from, an airport within that area. ATC authorizations may be given as individual approval of specific operations or may be contained in written agreements between airport users and the tower concerned. (Refer to FAR Parts 1 and 91.)

- 6. <u>Airport Traffic Control Tower</u> A central operations facility in the terminal air traffic control system, consisting of tower cab structure, including an associated common IFR room if radar equipped, using air/ground communications and/ or radar, visual signalling and other devices, to provide safe and expeditious movement of terminal air traffic.
- 7. <u>Air Taxi Operations</u> Air taxi operations and commuter air carrier operations (takeoffs and landings) carrying passengers, mail or cargo for revenue in accordance with FAR Part 135 or Part 121.
- 8. <u>Airway/Federal Airway</u> A control area or portion thereof established in the form of a corridor, the centerline of which is defined by radio navigational aids (Refer to FAR Part 7.)
- 9. <u>Altitude</u> The height of the level, point or object measured in feet Above Ground Level (AGL) or from Mean Sea Level (MSL).
 - 1. MSL Altitude Altitude, expressed in feet measured from mean sea level.
 - 2. AGL Altitude Altitude, expressed in feet measured above ground level.
 - 3. Indicated Altitude The altitude as shown by an altimeter. On a pressure or barometric altimeter it is altitude as shown uncorrected for instrument error and uncompensated for variation from standard atmospheric conditions.
- 10. <u>Area Navigation/RNAV</u> A method of navigation that permits aircraft operations on any desired course within the coverage of station-referenced navigation signals or within the limits of self-contained system capability (Refer to FAR Part 71.)

- a. Area Navigation Low Route An area navigation route within the airspace extending upward from 1,200 feet above the surface of the earth to, but not including, 18,000 feet MSL.
- b. Area Navigation High Route An area navigation route within the airspace extending upward from and including 18,000 feet MSL to flight level 450.
- c. Random Area Navigation Routes/Random RNAV Routes -Direct routes, based on area navigation capability, between waypoints, defined in terms of degree/distance fixes or offset from published or established routes/airways at specified distance and direction.
- d. RNAV Waypoint/W/P A predetermined geographical position used for route or instrument approach definition or progress reporting purposes that is defined to a VORTAC station position.
- 11. <u>Automatic Altitude Reporting</u> That function of a transponder which responds to Mode C interrogations by transmitting the aircraft's altitude in 100-foot increments.
- 12. <u>Automatic Direction Finder/ADF</u> An aircraft radio navigation system which senses and indicates the direction to a L/MF nondirectional radio beacon (NDB) ground transmitter. Direction is indicated to the pilot as a magnetic bearing or as a relative bearing to the longitudinal axis of the aircraft depending on the type of indicator installed in the aircraft. In certain applications, such as military, ADF operations may be based on airborne and ground transmitters in the VHF/UHF frequency spectrum.
- 13. <u>Balloon</u> A lighter-than-air aircraft that is not engine driven.
- 14. <u>Business Transportation</u> Any use of an aircraft not for compensation or hire by an individual for the purposes of transportation required by a business in which he is engaged.
- 15. <u>Certificated Pilot</u> A person who holds a certificate issued by FAA, which qualifies him to operate aircraft within the limitations prescribed on the certificate.

- 16. <u>Colored (L/MF) Airway</u> Low altitude airway over the state of Alaska predicated on L/MF navigation aids. It is depicted on aeronautical charts by color and number.
- 17. <u>Continental United States</u> The 49 states located on the continent of North America and the District of Columbia.
- 18. <u>Conterminous U.S.</u> The forty-eight adjoining states and the District of Columbia.
- 19. <u>Controlled Airport</u> An airport at which a control tower is in operation.
- 20. <u>Controlled Airspace</u> Airspace, designated as a continental control area, control area, control zone, terminal control area, or transition area, within which some or all aircraft may be subject to air traffic control (Refer to FAR Part 71).

Types of U.S. Controlled Airspace:

- a. Continental Control Area The airspace of the 48 continguous states, the District of Columbia and Alaska, excluding the Alaska peninsula west of Long. 160 00'00"W at and above 14,500 MSL, but does not include:
 - 1. The airspace less than 1,500 feet above the surface of the earth or,
 - 2. Prohibited and restricted areas, other than the restricted areas listed in FAR Part 71.
- b. Control Area Airspace designated as Colored Federal Airways, VOR Federal Airways, Terminal Control Areas, Additional Control Areas, and Control Area Extensions, but not including the Continental Control Area. Unless otherwise designated, control areas also include the airspace between a segment of a main VOR airway and its associated alternate segments. The vertical extent of the various categories of airspace contained in control areas are defined in FAR Part 71.
- c. Control Zone Controlled airspace which extends upward from the surface and terminates at the base of the continental control area. Control zones that do not underlie the continental control area have no upper limit. A control zone may include one or more airports and is normally a circular area within a radius of 5 statute miles and any extensions necessary to include instrument approach and departure paths.

- 27. Flight Service Station/FSS Air Traffic Service facilities within the National Airspace System (NAS) which provide preflight pilot briefing and en route communications with VFR flights, assist lost IFR/VFR aircraft, assist aircraft having emergencies, relay ATC clearances, originate, classify, and disseminate Notices to Airmen, broadcast aviation weather and NAS information, receive and close flight plans, monitor radio NAVAIDS, notify search and rescue units of missing VFR aircraft, and operate the national weather teletypewriter systems. In addition, at selected locations FSS's take weather observations, issue airport advisories, administer airman written examinations, and advise Customs and Immigrations of transborder flight.
- 28. <u>General Aviation/GA</u> That portion of civil aviation which encompasses all facets of aviation except air carriers holding a certificate of public convenience and necessity from the Civil Aeronautics Board, and large aircraft commercial operators.
- 29. <u>General Aviation Aircraft</u> All civil aircraft except those classified as air carrier.
- 30. <u>Group I Terminal Control Area</u> A TCA representing one of the nine busiest locations in the U.S. in terms of aircraft operations and passengers carried within which it is necessary for safety reasons to have strict requirements for operation.
- 31. <u>Group II Terminal Control Area</u> A TCA representing one of the twelve less busy locations than a Group I TCA and requiring less strigent pilot and equipment requirements.
- 32. <u>Group III Terminal Control Area</u> One of the 43 least busy TCA's where an ARTS-III system exists.
- 33. <u>IFR Conditions</u> Weather conditions below the minimum for flight under visual rules.

- 34. <u>Industrial/Special</u> Any use of an aircraft for specialized work allied with industrial activity; excluding transportation and aerial application. (Examples: pipe line patrol; survey; advertising; photography; helicopter hoist; etc.)
- 35. <u>Instructional Flying</u> Any use of an aircraft for the purposes of formal instruction with the flight instructor aboard, or with the maneuvers on the particular flight (s) specified by the flight instructor.
- 36. <u>Instrument Flight Rules/IFR</u> Rules governing the procedures for conducting instrument flight. Also a term used by pilots and controllers to indicate type of flight plan (See Visual Flight Rules).
- 37. <u>Instrument Landing System/ILS</u> A precision instrument approach system consisting of the following electronic components and visual aids:
 - a. Localizer
 - b. Glide Slope
 - c. Outer Marker d. Middle Marker
 - e. Approach Lights

Refer to FAR Part 91.

- 38. Jet Route A route designed to serve aircraft operations from 18,000 MSL up to and including flight level 450. The routes are referred to as "J" routes with numbering to identify the designated route, e.g., J 105. (Refer to FAR Part 71.)
- 39. Low Altitude Airway Structure/Federal Airways The network of airways serving aircraft operations up to but not including 18,000 MSL. (See Airway.)
- 40. <u>Microwave Landing System/MLS</u> An instrument landing system operating in the microwave spectrum which provides lateral and vertical guidance to aircraft having compatible avionics equipment. (See Instrument Landing System.)

- 41. <u>Non-Positive Controlled Airspace</u> Controlled airspace below 18,000 feet MSL.
- 42. <u>Personal and Pleasure Flying</u> Any use of an aircraft for personal purposes not associated with business or profession, and not for hire. This includes maintenance of pilot proficiency.
- 43. <u>Pilot Briefing</u> Information furnished a pilot to assist in flight planning. Principal items are weather conditions, notices to airmen, routes, and preparation and handling of the flight plan.
- 44. <u>Piston-Powered Aircraft</u> An aircraft operated by engines in which pistons moving back and forth work upon a crank shaft or other device to create rotational movement.
- 45. Positive Controlled Area/PCA Airspace designated in Far Part 71 wherein aircraft are required to be operated under Instrument Flight Rules (IFR). Vertical extent of PCA is from 18,000 feet to and including flight level 600 throughout most of the conterminous United States and from flight level 240 to and including flight level 600 in designated portions of Alaska.
- 46. <u>Radio Altimeter/Radar Altimeter</u> Aircraft equipment which makes use of the reflection of radio waves from the ground to determine the height of the aircraft above the surface.
- 47. <u>Region (FAA)</u> A principal subdivision of the Federal Aviation Administration organized to carry out FAA programs under the executive direction of a regional director within the specific geographic boundaries.
- 48. Registered Aircraft Aircraft registered with FAA.
- 49. <u>Rotorcraft</u> A heavier-than-air aircraft that derives lift from one or more revolving "wings" or blades, engine-driven about an approximately vertical axis. A rotorcraft does not have conventional fixed wings, nor in any but some earlier models is it provided with a conventional propeller, forward thrust

and lift being furnished by the rotor. The powered rotor blades also enable the machine to hover, and to land and take off vertically.

- 50. <u>Transponder</u> The airborne radar beacon receiver/transmitter portion of the Air Traffic Control Radar Beacon System (ATCRBS), which automatically receives signals from interrogations being received on the mode to which it is set to respond.
- 51. <u>Turbine-Powered Aircraft</u> Includes aircraft with either turbojet, turbofan, turboprop, or turboshaft engines.
- 52. <u>Turbojet</u> Aircraft operated by jet engines incorporating a turbine-driven air compressor to take in and compress the air for the combustion of fuel, the gases of combustion (or the heated air) being used both to rotate the turbine and to create a thrust-producing engine.
- 53. <u>Turboprop</u> Aircraft in which the main propulsive force is supplied by a gas turbine-driven conventional propeller. Additional propulsive force may be supplied from the discharge turbine exhaust gas.
- 54. <u>Uncontrolled Airport</u> Also known as a non-tower airport, an airport at which no control tower is in operation. It may have an FSS, UNICOM operator, or no facility at all.
- 55. <u>Uncontrolled Airspace</u> That portion of the airspace that has not been designated as continental control area, control area, control zone, terminal control area, or transition area. (See Controlled Airspace)
- 56. <u>Unicom</u> A non-government air/ground radio communication facility, which may provide airport advisory service at certain airports. Locations and frequencies of UNICOM's are shown on aeronautical charts and publications.
- 57. <u>U.S. Civil Aircraft Fleet</u> All aircraft under U.S. registry exclusive of Military.

- 58. <u>Visual Flight Rules/VFR</u> Rules that govern the procedures for conducting flight under visual conditions. The term "VFR" is also used in the United States to indicate weather conditions that are equal to or greater than minimum VFR requirements. In addition, it is used by pilots and controllers to indicate type of flight plan. (See Instrument Flight Rules) (Refer to FAR Part 91.)
- 59. <u>VOR Airway</u> Low altitude airway designated from 1,200 feet AGL to 18,000 feet MSL predicated on VOR/VORTAC navigation aids. Also known as a "Victor" airway, it is indicated by a "V" on aeronautical charts and is numbered similarly to the U.S. highway system.
- 60. <u>VOR/Very High Frequency Omnidirectional Range Station</u> -A ground-based electronic navigation aid transmitting very high frequency navigation signals, 360 degrees in azimuth, oriented from magnetic north. Used as the basis for navigation in the national airspace system. The VOR periodically identifies itself by morse code and may have an additional voice identification feature. Voice features may be used by ATC or FSS for transmitting instructions/ information to pilots.

BIBLIOGRAPHY

<u>Airman's Information Manual</u>, Parts 1, 2, 3, 3A, 4. U.S. Department of Transportation, Federal Aviation Administration, Washington DC: U.S. Government Printing Office, 1975-1976.

Approval of Area Navigation Systems for Use in the U.S. National Airspace System, Advisory Circular 90-45A, U.S. Department of Transportation, Federal Aviation Administration, Washington DC: U.S. Department of Transportation, Publications Section, 1975.

Belyamani, Mohamed Seddik, "General Aviation: A Survey of its Diverse Activities and Current Problems", Masters Thesis, Massachusetts Institute of Technology, Cambridge MA, 1973.

Bishop, Yvonne E., Stephen E. Feinberg, and Paul W. Holland, <u>Discrete Multivariate Analysis:</u> Theory and Practice, Cambridge MA: the MIT Press, 1975.

Business and Commercial Aviation, (April 1976).

Census of U.S. Civil Aircraft Calendar Year 1975 and 1974, U.S. Department of Transportation, Federal Aviation Administration, Washington DC: U.S. Government Printing Office, 1976 and 1975.

Dodge, Stephen M., "Comparative Analysis of Area Navigation Systems for General Aviation", Masters Thesis, Massachusetts Institute of Technology, Cambridge MA, 1973.

Electronics Research and Development for Civil Aviation, Electronics Division of the Institution of Electrical Engineers, London GB, 1963.

<u>FAA Air Traffic Activity Calendar Year 1975</u>, U.S. Department of Transportation, Federal Aviation Administration, Washington: U.S. Government Printing Office, 1976.

<u>Federal Aviation Regulations</u>, U.S. Department of Transportation, Federal Aviation Administration, Washington DC: U.S. Government Printing Office, 1974.

Instrument Flying Handbook, U.S. Department of Transportation, Federal Aviation Administration, Washington DC; U.S. Government Printing Office, 1974.

Kershner, William K., <u>The Student Pilot's Flight Manual</u>, Ames IA: Iowa State University Press, 1973. Klass, Philip J., "FAA Refines Anti-Collision Plan Details", Aviation Week and Space Technology, (March 15, 1976), 172-181.

The National Aviation System Plan Fiscal Years 1976-1985, of Transportation, Federal Aviation Administration, Washington DC: U.S. Government Printing Office, 1975.

The National Aviation System Plan Ten Year Plan 1973-1982, U.S. Department of Transportation, Federal Aviation Administration, Washington DC: U.S. Government Printing Office, 1975.

The National Aviation System Policy Summary, U.S. Department of Transportation, Federal Aviation Administration, Washington DC: U.S. Government Printing Office, 1973.

Terminal Air Traffic Control, U.S. Department of Transportation, Federal Aviation Administration, Washington: U.S. Government Printing Office, 1973.

United States Standards for Terminal Instrument Procedures (TERPS), U.S. Department of Transportation, Federal Aviation Administration, Washington DC: U.S. Government Printing Office, 1970.

Vahovich, Stephen G., <u>General Aviation: Aircraft, Owner</u> <u>§ Utilization Characteristics, Washington DC: U.S.</u> <u>Government Printing Office, 1976.</u>

200Copies